• Title/Summary/Keyword: zoonotic pathogens

Search Result 33, Processing Time 0.024 seconds

Survey and Phylogenetic Analysis of Rodents and Important Rodent-Borne Zoonotic Pathogens in Gedu, Bhutan

  • Phuentshok, Yoenten;Dorji, Kezang;Zangpo, Tandin;Davidson, Silas A.;Takhampunya, Ratree;Tenzinla, Tenzinla;Dorjee, Chencho;Morris, Roger S.;Jolly, Peter D.;Dorjee, Sithar;McKenzie, Joanna S.
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.521-525
    • /
    • 2018
  • Rodents are well-known reservoirs and vectors of many emerging and re-emerging infectious diseases, but little is known about their role in zoonotic disease transmission in Bhutan. In this study, a cross-sectional investigation of zoonotic disease pathogens in rodents was performed in Chukha district, Bhutan, where a high incidence of scrub typhus and cases of acute undifferentiated febrile illness had been reported in people during the preceding 4-6 months. Twelve rodents were trapped alive using wire-mesh traps. Following euthanasia, liver and kidney tissues were removed and tested using PCR for Orientia tsutsugamushi and other bacterial and rickettsial pathogens causing bartonellosis, borreliosis, human monocytic ehrlichiosis, human granulocytic anaplasmosis, leptospirosis, and rickettsiosis. A phylogenetic analysis was performed on all rodent species captured and pathogens detected. Four out of the 12 rodents (33.3%) tested positive by PCR for zoonotic pathogens. Anaplasma phagocytophilum, Bartonella grahamii, and B. queenslandensis were identified for the first time in Bhutan. Leptospira interrogans was also detected for the first time from rodents in Bhutan. The findings demonstrate the presence of these zoonotic pathogens in rodents in Bhutan, which may pose a risk of disease transmission to humans.

Veterinarians as a Risk Group for Zoonoses: Exposure, Knowledge and Protective Practices in Finland

  • Kinnunen, Paula M.;Matomaki, Alisa;Verkola, Marie;Heikinheimo, Annamari;Vapalahti, Olli;Kallio-kokko, Hannimari;Virtala, Anna-Maija;Jokelainen, Pikka
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.78-85
    • /
    • 2022
  • Background: Veterinarians may encounter a variety of zoonotic pathogens in their work. Methods: We conducted two cross-sectional questionnaire studies among veterinarians in Finland. Participants were recruited during two Annual Veterinary Congresses. In 2009, 306 veterinarians participated in an extensive questionnaire study, and in 2016, 262 veterinarians participated in a more focused study that included two same questions. Results: In 2009, the majority (90.9%) of the participating veterinarians reported having been occupationally exposed to zoonotic pathogens. Zoonotic infections (15.0%), needle stick incidents (78.8%), bites (85.0%), as well as infected skin lesions (24.2%) were reported. In 2009, 8.2% of the participants fully agreed with the statement "I have good knowledge of zoonoses and their prevention"; in 2016, the proportion was 10.3%. The reported use of protective practices and personal protective equipment in connection with specific veterinary procedures indicated that there was room for improvement, particularly in protection from pathogens that are transmissible via inhalation and mucous membranes. Conclusion: The results confirm that veterinarians are commonly occupationally exposed to zoonotic pathogens. Education should aim to improve and maintain the knowledge of zoonoses and their prevention. Use of protective practices should be advocated.

The Climate Change and Zoonosis (Zoonotic Disease Prevention and Control) (기후변화와 인수공통전염병 관리)

  • Jung, Suk-Chan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.228-239
    • /
    • 2009
  • The observations on climate change show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. The effects of climate change are likely to include more variable weather, heat waves, increased mean temperature, rains, flooding and droughts. The threat of climate change and global warming on human and animal health is now recognized as a global issue. This presentation is described an overview of the latest scientific knowledge on the impact of climate change on zoonotic diseases. Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as West Nile fever, Rift Valley fever, Japanese encephalitis, bluetongue, malaria and visceral leishmaniasis, and other diarrheal diseases. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The impact of climate change on the emergence and re-emergence of animal diseases has been confirmed by a majority of countries. Emerging zoonotic diseases are increasingly recognized as a global and regional issue with potential serious human health and economic impacts and their current upward trends are likely to continue. Coordinated international responses are therefore essential across veterinary and human health sectors, regions and countries to control and prevent emerging zoonoses. A new early warning and alert systems is developing and introducing for enhancing surveillance and response to zoonotic diseases. And international networks that include public health, research, medical and veterinary laboratories working with zoonotic pathogens should be established and strengthened. Facing this challenging future, the long-term strategies for zoonotic diseases that may be affected by climate change is need for better prevention and control measures in susceptible livestock, wildlife and vectors in Korea. In conclusion, strengthening global, regional and national early warning systems is extremely important, as are coordinated research programmes and subsequent prevention and control measures, and need for the global surveillance network essential for early detection of zoonotic diseases.

  • PDF

A Case-Study of Implementation of Improved Strategies for Prevention of Laboratory-acquired Brucellosis

  • Castrodale, Louisa J.;Raczniak, Gregory A.;Rudolph, Karen M.;Chikoyak, Lori;Cox, Russell S.;Franklin, Tricia L.;Traxler, Rita M.;Guerra, Marta
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.353-356
    • /
    • 2015
  • Background: In 2012, the Alaska Section of Epidemiology investigated personnel potentially exposed to a Brucella suis isolate as it transited through three laboratories. Methods: We summarize the first implementation of the United States Centers for Disease Control and Prevention 2013 revised recommendations for monitoring such exposures: (1) risk classification; (2) antimicrobial postexposure prophylaxis; (3) serologic monitoring; and (4) symptom surveillance. Results: Over 30 people were assessed for exposure and subsequently monitored for development of illness. No cases of laboratory-associated brucellosis occurred. Changes were made to gaps in laboratory biosafety practices that had been identified in the investigation. Conclusion: Achieving full compliance for the precise schedule of serologic monitoring was challenging and resource intensive for the laboratory performing testing. More refined exposure assessments could inform decision making for follow-up to maximize likelihood of detecting persons at risk while not overtaxing resources.

Public Health Risks: Antibiotic Resistance - Review -

  • Barton, Mary D;Hart, Wendy S
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2001
  • Antibiotic resistance in human pathogens is a major public health issue. Some of the resistance problem can be attributed to the transfer of resistant bacteria from animals to people and the transfer of resistance genes from animal pathogens and commensal bacteria to human pathogens. Control measures include improvements in food hygiene to reduce the spread of zoonotic bacteria to people via the food chain. However, to specifically address the issue, the medical profession must control misuse and overuse of antibiotics in hospitals and community practice. In addition, the livestock industries and their advisors must reduce and refine the use of antibiotics in animal production and replace antibiotics with alternative disease control measures as much as possible.

Aerobic bacteria from oral cavities and cloaca of snakes in a petting zoo

  • Jho, Yeon-Sook;Park, Dae-Hun;Lee, Jong-Hwa;Lyoo, Young S.
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.243-247
    • /
    • 2011
  • It is important to identify the bacteria in snakes because they can cause disease; importantly, bacteria such as Stenotrophomonas maltophilia, Escherichia coli, Proteus vulgaris etc. could be pathogens especially in hospitalized, debilitated hosts, and immunocompromised patients. To analyze the distribution of snakes' bacteria in petting zoo, samples from 20 snakes were collected from 2002 to 2008. Nine bacteria species were isolated from both oral and cloaca while four and six species were identified only from oral and cloaca, respectively. Except for Actinobacter sp., all of the identified strains are opportunistic pathogens, and most of them can cause nosocomial infections in humans. Present results indicate that prevalence of various zoonotic bacterial strains in snakes could be involved in potential transfer of these bacteria into caretakers and other animals. Therefore, it needs to examine the antibiotic resistance of these pathogens to prevent outbreaks.

Enterocytozoon bieneusi Genotypes and Infections in the Horses in Korea

  • Lee, Haeseung;Lee, Seung-Hun;Lee, Yu-Ran;Kim, Ha-Young;Moon, Bo-Youn;Han, Jee Eun;Rhee, Man Hee;Kwon, Oh-Deog;Kwak, Dongmi
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.6
    • /
    • pp.639-643
    • /
    • 2021
  • Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.

Evaluation of in vitro and in vivo bacteriophage efficacy against Salmonella enterica serovar Enteritidis infection (Bacteriophage의 Salmonella enterica serovar Enteritidis에 대한 in vitro 및 in vivo 효능 평가)

  • Cha, Seung-Bin;Rayamajhi, Nabin;Lee, Won-Jung;Shin, Min-Kyoung;Roh, Yu-Mi;Jung, Myung-Hwan;Myoung, Kil-Sun;Ahn, Young-Tae;Huh, Chul-Sung;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • Salmonella (S.) Enterica infection ranks among the most common food borne bacterial infections worldwide. Although there are six subspecies of S. Enterica, the vast majority of human and animal infections are caused by strains belonging to subspecies 1 serovar Typhimurium and Enteritidis. Recent reports on antibiotic resistance of Salmonella spp. are rising steadily. The increasing problem of antibiotic resistance has rekindled interest in bacteriophage to therapy. Therefore, we investigated the efficacy of bacteriophage in S. enterica serovar Enteritidis infected mice and pigs by measuring of body condition, body weight, bacterial colonization and weight of organs based on the in vitro analysis. In vitro experiment, phage cultured with S. Enteritidis showed clear lysis pattern, the plaque forming unit (PFU) of our phage culture was $1.5{\times}10^{11}PFU/mL$, and phage showed its maximum activity at 4 h post inoculation. In mouse experiment, there was no significant difference among experimental groups in the general body conditions and body weight of mice. However, there was difference in weight of liver and spleen depending on the experimental group (p < 0.05). The weight of liver and spleen were reduced by the phage treatment. Also bacterial colonization in spleen and liver were significantly reduced by the phage treatment. In pig experiment, the general body conditions and body temperature exhibited not much difference among the pigs except few pigs in group 3 which showed poor body conditions. From the feces in each group, we could isolate the S. Enteritidis only from group 3. Bacterial enrichment culture was necessary for isolating the bacteria from 5 dpi and 10 dpi, however direct isolation was possible from 15 dpi feces. In phage treated group, postmortem lesion was better than non-phage treated group. Recently, antibiotic resistance concerns on the food-borne bacterial pathogens have been increasing because of the wide spread of the antibiotics resistance genes. This concern is widely transmitted to the human related public health. As one of the alternative treatments on the bacterial pathogens, attempt using phages have been made to control the bacterial diseases. The positive possibility of the trail using phage was observed to control the S. enterica serovar Enteritidis in this study even though the further analysis has been remained.

Isolation and identification of mosquito-borne zoonotic diseases in slaughterhouse in Daejeon

  • Youngju Kim;Gyurae Kim;Sunkyong Song;Youngshik Jung;Seojin Park;Sang-Joon Lee;Ho-Seong Cho;Yeonsu Oh
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study was performed to investigate the distribution of mosquito vectors related to the zoonotic disease in Daejeon. Samples were taken using a blacklight trap once a month from March to November 2021 at the slaughterhouse in Daejeon. A total of 820 mosquitoes were captured and classified into 5 genera and 8 species. Among the collected mosquitoes, 319 (38.9%) and 295 (35.93%) were Aedes vexans nipponii and Culex pipiens pallens, respectively, making them the dominant species. The overall number of mosquitoes collected started to increase from May and reached the largest value of 329 (40.12%) in June. Trapped mosquitoes are created 72 pools by environmental condition and by species. The pools were tested by PCR methods for 7 zoonotic pathogens. Flavivirus-positive products were confirmed by DNA sequencing. Japanese encephalitis viruses were detected in 3 pools collected from cow lairage (Culex pipiens pallens) in May, cow by-product processing room (Aedes vexans nipponii) in June and cow lairage (Mansonia uniformis) in June. Culex flavivirus were detected in 4 pools. Based on the results of this study, it is considered that continous surveillence of mosquitoes in livestock assembly facilities (slaughterhouse) should be performed for controlling mosquito populations and mediating disease spread by mosquitoes.

Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016

  • Ma, Da-Won;Lee, Myoung-Ro;Hong, Sung-Hee;Cho, Shin-Hyeong;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.531-536
    • /
    • 2019
  • Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013-2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and ${\beta}-giardin$ genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the ${\beta}-giardin$ gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.