• Title/Summary/Keyword: zoom

Search Result 559, Processing Time 0.032 seconds

Improvement of resolution to finite Band using ZOOM FFT (특정 대역 신호의 주파수 성분 분석을 위한 ZOOM FFT 기법)

  • Park, Chong-Yeun;Cho, Gye-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3091-3093
    • /
    • 2000
  • FFT 알고리즘은 DC 성분에서부터 나이퀴스트 주파수까지 주파수 성분에 관한 해석이며, 주파수 정밀도는 DC 성분에서부터 나이퀴스트 주파수까지의 샘플 수에 의존했다. 하지만 많은 경우, 특정한 주파수 대역에 대한 주파수 정보를 보다 정확하게 분석하고자 하는 상황이 나타난다. 이렇게 특정 주파수 대역에 대해서 확장된 분석을 수행하는 것을 Zoom FFT라 한다. 하지만, 이러한 Zoom FFT를 수행한다 할지라도 FFT 알고리즘이 가지는 특성상 입력 신호가 가지는 정확한 주파수 성분을 얻는다는 것은 불 가능하다. 본 논문에서는 Zoom FFT를 수행하는 방법과 수행했을 때 발생하는 에러에 관해서 다룬다.

  • PDF

The design methods of Infrared Camera with Continuous zoom

  • Son, Seok-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, we propose an efficient design method for a thermal camera with continuous zoom based on the research and manufacturing experience of the thermal camera. In addition, it is divided into system design method, optical design method, mechanical design method, and electronic design method. First, we propose an effective NUC compensation method and a lens-specific sensitivity design method in terms of system. Second, we propose a zoom trajectory design method considering the temperature effect on the optical aspect. Third, it suggests the minimization of optical axis shaking between magnification conversion in terms of mechanism. Finally, we propose a lens-specific temperature compensation method and a speed conversion algorithm according to the zoom interval as an electronic aspect.

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Evaluation of a Corrected Cam for an Interchangeable Lens with a Distance Window

  • Kim, Jin Woo;Ryu, Jae Myung;Jo, Jae Heung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • Recently, the number of camera companies that produce commercializing interchangeable lens systems such as digital single lens reflex (DSLR) and compact system camera (CSC) lenses has been gradually increasing. These interchangeable lenses have various kinds of lenses with distinct specifications. In particular, the distance window among these specifications is the function most preferred by customers. Mechanical manual zoom and manual focus in these high end camera lenses with a distance window are in particular desirable specifications and are required for product quality. However, the AF lens group is linked to the zoom cam and moves. Because the AF lens group moves along with the object distance, we can not realize the distance window with only zoom locus calculation. In this paper, in order to solve the problem, we suggest an optical calculation method for a corrected AF zoom cam for an interchangeable lens with a distance window to achieve product differentiation and analyze the error in the calculation.

Design and Performance Analysis of Zoom-FFT Based FMCW Radar Level Meter (Zoom-FFT 기반 FMCW 레이더 레벨미터의 설계 및 성능분석)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • This paper presents design of a FMCW (Frequency Modulated Continuous Wave) level meter as well as simulation result of the designed system. The system is designed to measure maximum range of 20m since FMCW radar can be used for measuring short range distance. The distance is measured by analyzing the beat signal which is generated as result of mixing transmitting signal with the reflected received signal. The Fast Fourier Transform is applied to analyze the beat signal for calculating the displacement and Zoom FFT technique is used to minimize measurement error as well as increase the resolution of the measurement. The resolution of the measurement of the designed system in this paper is 2.2mm and bandwidth of 1.024GHz is used for simulation. Thus the simulation results are analyzed and compared in various conditions in order to get a comprehensive idea of frequency resolution and displacement resolution.

The optical capacity's comparison, analysis of copier zoom lens system between symmetric and asymmetric forms (대칭형과 비대칭형 복사기 줌 렌즈계의 광학적 성능 비교 분석)

  • Ji, Taek-Sang;Lim, Hyeon-Seon;Kim, Bong-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • This research chose the existing designed copier zoom lens system and analyzed to calculate the optical capacity. As this lens system was the zoom lens system of finite object point, differed form the general camera zoom lens of infinite object point, it got a limited movement range because it moved between the fixed object and the image. In the result of comparison the optical capacities between a symmetric form and a asymmetric form. We could find out the truth which a asymmetric form constituted comparative stable aberrations and existed a tracks of effort for aberration correction. Therefore, a symmetric form is allotted satisfactorily from improved aberrations by itself in the fixed focal lens system. However, it has a limit of improving for capacity when it is used a zoom lens system got a symmetric form.

  • PDF

Optical system design using lens modules I:optimum first order design in zoom lens (렌즈모듈을 이용한 광학계 설계 I: 줌렌즈의 First Order 최적설계)

  • 박성찬;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • This paper presents the optimum initial design containing the first and third order properties of the four-group video camera zoom system using lens modules, and its real lens design. The optimum initial design with focal length range of 6.1693 to 58.4065 mm is derived by assigning appropriate first order quantities and third order aberrations to each module along with the specific constraints required for optimization. By scaling the focal length of each lens group, an initial real lens selected for each group has been designed to match its focal length into that of the each lens module, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system consisting of original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in video zoom camera employing the rear focus method.

  • PDF

Analytic Calculation Method of Zoom Loci for Zoom Lens System with Infinite Object Distance (무한물점용 줌 렌즈 광학계의 줌 궤적에 대한 해석적 계산법)

  • Oh, Jeong Hyo;Ryu, Jae Myung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • In case of the optical camera system with an infinite object distance, optical designs different from previous systems are required to speed up the auto-focus. As the number of lens groups is increased due to this, the conventional analytic method found it difficult to calculate the locus, and even the one-step advanced calculation method also had the trouble of taking a lot of time. In this paper, we suggested an analytic method for calculating the zoom loci by analyzing movement of one or two groups for situations corresponding to the given back focal length and effective focal length after taking a spline interpolation for each lens group. With this method, we would not only calculate the analytic zoom loci without iterations in every optical system without placing a limit on the group number at the zoom lens systems with the infinite object distance, but we would also show the utilities of this method through many examples.

An Empirical Study on Factors Affecting Immersion and Learning Outcomes in Real-time Non-face-to-face Classes using Zoom (Zoom을 이용한 실시간 비대면 수업에서 몰입과 학습성과에 미치는 요인에 관한 실증연구)

  • Kim, Na Rang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.129-141
    • /
    • 2022
  • The purpose of this study is to reveal the variables that affect learning immersion, in real-time non-face-to-face classes. To this end, a survey was conducted from November 22, 2021 to December 5, 2021 for students with experience in zoom classes. Excluding incorrect questionnaire, 117 copies were analyzed using a structural equation model. The results show that 'interest' and 'interaction level' influenced 'learning immersion', and 'learning immersion' had a positive effect on 'learning outcome'. The contribution of this study is that it empirically analyzed variables affecting learning immersion in real-time non-face-to-face classes. In the follow-up study, it is necessary to verify variables that affect learning immersion in various platforms, including zoom.