• Title/Summary/Keyword: zirconia primer

Search Result 22, Processing Time 0.033 seconds

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.

The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention

  • Kim, Seung-Mi;Yoon, Ji-Young;Lee, Myung-Hyun;Oh, Nam-Sik
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.198-203
    • /
    • 2013
  • PURPOSE. The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. MATERIALS AND METHODS. Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water ($37^{\circ}C$) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. RESULTS. The means and standard deviations of retentive force in Newton for each group were $265.15{\pm}35.04$ N (P), $318.21{\pm}22.24$ N (PZ), $445.13{\pm}78.54$ N (S) and $508.21{\pm}79.48$ N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. CONCLUSION. This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force.

Comparison of shear bond strength of orthodontic brackets using various zirconia primers

  • Lee, Ji-Yeon;Kim, Jin-Seok;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.4
    • /
    • pp.164-170
    • /
    • 2015
  • Objective: The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods: We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using $Transbond^{TM}$ XT Paste and light cured for 15 s at $1,100mW/cm^2$. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results: The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, $ZP{\geq}MP{\geq}PC>NP$ but after thermocycling, the SBS was $ZLT{\geq}MPT{\geq}ZPT>PCT=NPT$ (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions: Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.

Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia (지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도)

  • Shi, Hong-Bing;Kim, Tae-Seok;Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.

Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

  • Lee, Ji-Yeon;Ahn, Jaechan;An, Sang In;Park, Jeong-won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2018
  • Objectives: The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods: Fifty zirconia blocks ($15{\times}15{\times}10mm$, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with $50{\mu}m$ $Al_2O_3$ for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at $37^{\circ}C$ storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results: Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions: Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

Clinical Guide for Adhesion of Zirconia Restoration (지르코니아 수복물의 접착을 위한 임상 가이드)

  • Hwang, Sung-Wook
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.58-69
    • /
    • 2014
  • In case of esthetic restorative procedure with zirconia restoration, we have to use resin cement because of not only just for retention but also esthetic reason. In such a clinical situation, we have to consider two bonding interfaces, one is tooth surface to resin cement and the other is zirconia surface to resin cement. There is well established bonding protocol between tooth surface to resin cement, but bonding protocol of zirconia surface to resin cement is still controversial. In scientific point of view, there are two mechanism for bonding of zirconia restoration.. One is mechanical retention and the other is chemical adhesion. However, we have three different options for bonding of zirconia restoration in clinical situation; 1) Tribo-chemical coating with silica and silane coupling agent 2) Zirconia primer with phosphate chemistry 3) Self-adhesive resin cement with phosphate chemistry.

Influence of sandblasting and primer on shear bond strength of resin cement to zirconia (샌드블라스팅과 프라이머가 지르코니아와 레진시멘트의 전단결합강도에 미치는 영향)

  • Lee, Jung-Haeng;Kim, Hyeong-Seob;Pae, Ah-Ran;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of mechanical, chemical surface treatments on the zirconia-to-resin cement shear bond strength (SBS). Materials and methods: Eighty zirconia discs (Lava, 3M ESPE) and eighty zirconia/alumina composite (Zirace, Acucera) were embedded in an epoxy resin base. Zirconia discs were randomly divided in to four treatment groups(10 for each manufacturer): $50\;{\mu}m$ $Al_2O_3$ sandblasting (S50), $110\;{\mu}m$ $Al_2O_3$ sandblasting (S110), $50\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus, Bisco Inc) (S50z) and $110\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus) (S110z). Two resin-based luting cements (Calibra, Panavia F) were used to build 2 mm diameter cylinders onto the zirconia. After 24 h of storage in water, SBS testing was evaluate using a universal testing machine. Bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and post hoc comparison was done using Tukey test (${\alpha}$ = .05). Results: Groups using primer showed the high shear bond strength. The groups that did not use primer presented lower shear bond strengths. Conclusion: The use of primer (Z-Prime Plus, Bisco) had significantly higher shear bond strengths.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.