• Title/Summary/Keyword: zircon U-Pb age

Search Result 73, Processing Time 0.047 seconds

SHRIMP V-Pb Zircon Age of a Felsic Meta-tuff in the Ogcheon Metamorphic Belt, Korea: Neoproterozoic (ca. 750 Ma) Volcanism (옥천변성대 규장질 변성응회암의 SHRIMP U-Pb 저어콘 연대: 신원생대(약 7.5억년전) 화산활동)

  • 조문섭;김태훈;김현철
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2004
  • Using a SHRIMP ion microprobe, we have dated zircon grains of a felsic meta-tuff from the so-cal1ed Munjuri Formation, Ogcheon metamorphic belt. The weighted mean $^{206}$ Pb/$^{238}$ U zircon ages obtained from 13 spot analyses of 10 grains provide an essentially concordant age of 747${\pm}$7Ma. This result corroborates the conventional U-Pb zircon age (756${\pm}$1Ma; Lee et al., 1998) for the Neoproterozoic bimodal volcanism in the Ogcheon belt. Thus, proto-basins associated with intracontinental, high-volcanicity rift in the Ogcheon belt are most likely to have formed at ca. 750 Ma.

SHRIMP U-Pb Zircon Ages of the Haeinsa Granite from Central Part of the Yeongnam Massif (영남육괴 중부에 분포하는 해인사화강암의 SHRIMP U-Pb 저어콘 연대)

  • Kim, Sunwoong;Choi, Jeongyun;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.401-407
    • /
    • 2016
  • The SHRIMP zircon U-Pb age dating was carried out for the age-unknown Haeinsa Granite located in the middle Yeongnam Massif. SHRIMP zircon U-Pb age determinations of 7 samples from the Haeinsa Granite in Geochang area show two age groups. Ages from 5 samples (M-3-1, H-1, 3, 5, 10) are $192.4{\pm}1.4{\sim}195.5{\pm}1.9Ma$, whereas ages from 2 samples (H-11 and 12) are $187.7{\pm}3.3Ma$ and $188.2{\pm}3.6Ma$, respectively.

LA-ICP-MS U-Pb Zircon Age of the Hongjesa Granite in the Northeast Yeongnam Massif (영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대)

  • Lee, Ho-Sun;Park, Kye-Hun;Song, Yong-Sun;Kim, Nam-Hoon;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • U-Pb zircon age for the Hongjesa granite, in the northeast Yeongnam massif, was determined using LA-ICP-MS. We obtained upper intercept age of $2013^{+30}/_{-24}(2{\sigma})$ Ma, indicating Paleoproterozoic granitic magmatism together with the Buncheon and Pyeonghae granite gneisses of the region.

Detrital Zircon U-Pb Ages of the Cretaceous Gurye Group, Gurye Basin, Korea: Implications for the Depositional Age and Provenance (백악기 구례분지 구례층군의 쇄설성 저어콘 U-Pb 연대: 퇴적시기와 퇴적물 기원지에 대한 의미)

  • Kim, Youhee;Chae, Yong-Un;Ha, Sujin;Choi, Taejin;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.405-429
    • /
    • 2022
  • Detrital zircon LA-MC-ICP-MS U-Pb dating of the Cretaceous Gurye Group, Gurye Basin, was carried out. Gurye Group consists of Supyeongri, Geumjeongri, Togeum, and Obongsan formations in ascending order, and five samples were collected for age dating. Based on the dating results, the lowermost Supyeongri and the uppermost Obongsan formations show narrow age ranges. Only Precambrian and Late Cretaceous zircons were found in the Supyeongri and Obongsan formations, respectively. However, the upper and lower Geumjeongri, and Togeum formations show wide age ranges from the Precambrian to Cretaceous. The youngest detrital zircon U-Pb ages of each formation except the Supyeongri Formation, which lacks Cretaceous zircon, were calculated to be ca. 107.4 Ma in the lower Geumjeongri Formation, ca. 104.6 Ma in the upper Geumjeongri Formation, ca. 97.7 Ma in the Togeum Formation, and ca. 88.5 Ma in the Obongsan Formation. Such results indicate that the depositional age of the Gurye Group can be constrained from the Lower Cretaceous Albian to the Upper Cretaceous Coniacian. Based on the distribution of the detrital zircon ages from each formation, the source area of the Gurye Group is interpreted to have been extended from the adjacent Youngnam Massif to the Okcheon Belt throughout the basin evolution. The increase of the Cretaceous zircon with time is thought to reflect the slab roll-back of the proto-Pacific plate during the Cretaceous.

Zircon U-Pb age of the Heuksan-do Granite: Implication of the Magmatism at ca. 114 Ma (흑산도 화강암의 저어콘 U-Pb 연령: 약 114 Ma 화성활동의 의미)

  • Lee, Tae-Ho;Park, Kye-Hun;Song, Yong-Sun;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • We report an Early Cretaceous zircon U-Pb age ($113.9{\pm}1.2Ma$) for the Heuksan-do granite located about 90km from Mokpo offcoast of the southwestern Korean peninsula. At this Aptian/Albian boundary, widespread igneous activities occurred not only in the Korean peninsula but also in the eastern China and Japan. We raise the possibility that the flat-slab subduction and delamination triggered such an episodic igneous activity over the large areas of East Asia.

Jurassic (~170Ma) Zircon U-Pb Age of a "Granite Boulder" in the Geumgang Limestone, Ogcheon Metamorphic Belt, Korea: Reinterpretation of its Origin (옥천변성대 금강석회암 내 "화강암 거력"의 쥬라기(~170 Ma) 저어콘 연대: 성인에 대한 재해석)

  • Cheong, Wonseok;Cho, Moonsup;Yi, Keewook;Lee, Min Sung;Kim, Yoonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • A "granite boulder", ~70 cm in size, was reported from the Geumgang Limestone, and has been considered as a glaciogenic dropstone. Since this interpretation has enormous implications for unraveling the evolution history of the Ogcheon Metamorphic Belt, we re-examined the contact relationship and structure of the "granite boulder", and estimated its emplacement age based upon SHRIMP U-Pb zircon dating. The weighted mean $^{206}Pb/^{238}U$ age pooled from 6 spot analyses of two specimens is $170{\pm}2Ma$ ($2{\sigma}$, MSWD=2.2). This zircon age suggests that the "granite boulder" in the Geumgang Limestone is a part of Jurassic granite, rather than a glaciogenic dropstone.

Zircon U-Pb and Rare Earth Elements Analyses on Banded Gneiss in Euiam Gneiss Complex, Central Gyeonggi Massif: Consideration for the Timing of Depositional Event and Metamorphism of the Basement Rocks in the Gyeonggi Massif (경기육괴 중부 의암 편마암 복합체 호상편마암의 저어콘 U-Pb 연령과 미량원소: 경기육괴 기반암의 퇴적 시기와 변성작용에 대한 고찰)

  • Lee, Byung Choon;Cho, Deung-Lyong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.215-233
    • /
    • 2022
  • The zircon U-Pb and trace element analyses were performed for banded gneiss in the Euiam gneiss complex, central Gyeonggi Massif. An age of detrital zircon shows predominant age peaks at ca. 2500-2480 Ma with numerous ages ranging from Siderian to Rhyacian period. The youngest age peak of detrital zircon constrains the maximum deposition age of protolith of banded gneiss at ca. 2070 Ma. Meanwhile, the zircon rim yielded metamorphic age of ca. 1966 ± 39 Ma ~ 1918 ± 13 Ma. Based on the error range, degree of discordancy, and value of mean squared weighted deviation, we considered that the age of 1918 ± 13 Ma is the most reasonable age indicating the timing of metamorphism for banded gneiss. The zircon rims yield Ti-in-zircon crystallization temperature of 690-740℃. Therefore, we suggested that there was a high-grade metamorphic event in the Gyeonggi Massif at ca. 1918 Ma which is older than the metamorphic event that occurred in the Gyeonggi Massif during ca. 1880-1860 Ma.

Deposional Age of the Bangnim Group, Pyeongchang, Korea Constrained by SHRIMP U-Pb Age of the Detrital Zircons (쇄설성 저어콘의 SHRIMP U-Pb 연령으로 한정한 평창지역 방림층군의 퇴적시기)

  • Gwak, Mu-Seong;Song, Yong-Sun;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • We determined SHRIMP U-Pb ages of the detrital zircons separated from the Bangnim Group of the Pyeongchang area to constrain its depositional age. As the result, the minimum age group yielded $^{206}Pb/^{238}U$ age of $450.3{\pm}4.2Ma$ (n=3), suggesting depositional age younger than Late Ordovician. Therefore, the Bangnim Group cannot be a Precambrian sedimentary formation but is younger than Myobong Formation of the Early Paleozoic Joseon Supergroup of the Taebaeksan basin. Such a depositional age implies that the Bangnim Group and structurally overlying Jangsan Quartzite should be in fault contact, suggesting that the Jangsan Quartzite, Myobong Formation and Pungchon Limestone thrusted over the Bangnim Group. The zircon U-Pb age distribution pattern of the Bangnim Group resembles those of the Early Paleozoic Myobong and Sambangsan Formations of the Taebaeksan basin and seemingly Middle Paleozoic Daehyangsan Quartzite and the Taean Formation. However, detrital zircon U-Pb age patterns of the Late Paleozoic Pyeongan Supergroup are quite distinct from them, suggesting drastic change in provenance of the detrital zircon supply. Therefore, we suggest that the Bangnim Group was deposited before the Pyeongan Supergroup.

SHRIMP Zircon U-Pb Ages of Basement Rocks in the Danyang National Geopark (단양 국가지질공원 기반암류의 SHRIMP 저어콘 U-Pb 연령)

  • Cheong, Wonseok;Han, Giun;Kim, Taehwan;Aum, Hyun Woo;Kim, Yoonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2020
  • We carried out the U-Pb age dating of zircon from basement rocks in the southern part of the Danyang National Geopark. Two migmatitic gneisses composed of biotite±sillimanite±garnet+feldspar+quartz were dated. Leucosomes in the samples were clearly distinguished from their melanosomes. The U-Pb isotopic compositions of zircon from sillimanite- and garnet-bearing migmatitic samples were measured using a secondary ion microprobe, yielding metamorphic ages, 1870±10 Ma (2σ)와 1863±6 Ma (2σ), respectively. 1.87~1.86 Ga metamorphic ages are consistent with those of the Paleoproterozoic low-P and high-T regional metamorphism (1.87~1.85 Ga) in the Yeongnam Massif. The maximum depositional age based upon the apparent 207Pb/206Pb ages of detrital zircon in the samples was estimated as 2.06 Ga, and thus sedimentation age of the protolith of the migmatitic gneisses ranges between 2.06 and 1.87 Ga.

SHRIMP U-Pb Zircon Ages of the Metapsammite in the Yeongam-Gangjin Area (영암-강진 일원 변성사질암의 SHRIMP U-Pb 저어콘 연대)

  • Kim, Dong-Yeon;Choi, Sung-Ja;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.287-299
    • /
    • 2015
  • The metapsammite distributed in the Yeongam-Gangjin area had been classified into age-unknown Yongamsan Formation, Seologri Formation and age-unknown Seogisan Formation, and these formations are reported as each other different formations. These formations have been renamed Precambrian Galdu or Permian Songjong Formations. In this study, we present detrital zircon SHRIMP U-Pb age data from the metapsammite to examine deposition time and stratigraphy. The analyzed U-Pb zircon ages dominantly reveal Paleoproterozoic ages of ca. 1.87Ga and the youngest detrital grains are constrained by the age of 246-265 Ma. The youngest age indicates late Permian or early Triassic for the deposition time. Therefore, the metapsammite in the Yeongam-Gangjin area is considered to be the upper formation of the late Paleozoic Pyeongan Group which is correlated with the Gohan-Donggo Formations or Nokam Formation of the Samcheock coal field and the Cheonunsan Formation of the Hwasun coal field. The metapsammite of the study area is the late Paleozoic Pyeongan Group by the zircon age rather than Precambrian Galdu and Permian Songjeong Formations are no longer meaningful. Therefore, we propose the upper Paleozoic 'metapelite' and 'metaspammite', or original formation name defined by 1:50,000 geological maps, instead of Galdu and Songjeong Formations.