• Title/Summary/Keyword: zinc galvanizing line.

Search Result 20, Processing Time 0.023 seconds

Coating deviation control in traverse direction in a continuous galvanizing line

  • Yoo, Seung-Ryeol;Choi, Il-Seop;Kim, Sang-Jun;Park, Han-Ku;Kwak, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.323-327
    • /
    • 1995
  • A new air knife system for coating thickness control in hot dip galvanizing process had been developed and installed on the CGL in Pohang Steel Works, POSCO. This new system consists of air knives with remotely adjustable nozzle slot and an automatic control system which can control both longitudinal and traverse coating deviations. Based on the optimal control algorithm, a traverse coating deviation control was designed. The controller controls the lip profile of the air knives with flexible structure according to the deviation of coating weight. From the measured values which are dependent on the strip width, the lip gaps are calculated with optimal algorithm and the model of the coating deviation. Time delay between knives and a coating thickness gauge is solved by the Smith Predictor.

  • PDF

A Study on Vibration Analysis of Roll-supported Rectangular Plate Subjected to Excitation (Roll에 의해 지지되어 가진력을 받는 직사각형 평판의 진동해석에 관한 연구)

  • 윤대성;황원걸;이돈출;김우영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1010-1014
    • /
    • 2001
  • A severe strip vibration in continuous galvanizing line facilities of the steel companies has sometimes occurred due to the exceeding wearing of the roll bush and bearing. This vibration brings on the lack of uniform coating thickness in steel plate. As a result, the total maintenance and product costs in this factory are increased by the shortage of operation time for the replacement of bush, bearings and these components. In this study, the vibration characteristics of this strip are investigated by the FEM using ANSYS. Also the vibration measurement of strip and its structure performed by the laser Doppler vibrometer(LDV) and accelerometers are compared to theoretical analysis results.

  • PDF

Effect of Galvanizing Furnace Temperature on Material Property and Galvanized Surface of Hot Rolled Galvanized Steel

  • Jong Chan Jeong;Jae Joong Kim;Seong Ho Han
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2024
  • Recently, hot rolled galvanized steel is widely used in automotive parts. As the paradigm of the automotive market has changed from fossil fuel vehicle to electric vehicle, the automotive industry needs more high-strength steels to reduce weights of automobiles. However, because high-strength steel contains high solute carbon, it is expected to have a risk of stretcher-strain on the surface due to dislocation trapping by solute [C] and [N]. Generally, galvanized steel is supposed to pass through a furnace around the temperature of Zinc pot to increase material temperature. Otherwise, the inhibition layer could not be formed. However, solute carbon and nitrogen are volatile enough to move around the furnace temperature. Moreover, the ratio of ferrite phase and precipitated Fe3C can be variable, resulting in yield point elongation related to the stretcher strain. Furthermore, the quality of the galvanized surface can be affected by a high temperature of the furnace. Although a relatively hot rolled galvanizing line furnace has a lower temperature than an annealing line furnace, it can affect various quality aspects. In other words, this paper aims to determine how these phenomena appear concerning furnace temperature.

Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys (용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행)

  • Zulkarnain, Zulkarnain;Baek, E.R.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

A Study on Coating Adhesion of Hot Rolled Galvanized Iron Manufactured without pickling process (산세생략형 열연 용융아연도금강판의 특성)

  • 최진원;전선호
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • Coating adherance behavior of low carbon steels, produced by POSCO, Korea, was studied in order to study the characteristics of hot rolled galvanized iron(HGI) manufactured without pickling line and the development of its process. Galvanizing experiments were carried out in zinc pot with 0.2wt% Al after hot rolled plates with scale were reduced at $550~750^{\circ}C$ in 10~30% hydrogen gas atmosphere during 60~400seconds. The reduced plates and coated products were examined by SST, XRD, SEM and EPMA on their surfaces and cross sections. Coating layer of HGI manufactured with pickling line was composed of retained scale, Fe-Zn-Al compound, Fe-Zn compound ($\delta_1\;and\;\zeta$ Phase) and pure zinc. It was superior to HGI in coating adhesion. It seems to be due to forming of Fe-Zn-Al compound in interface of matrix and retained porous scale.

  • PDF

Challenges in the Production of Thin Coatings at High Line Speed

  • Michel, Dubois;Luc, Warichet;Jose, Callegari
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Cost reduction of products is and will always be a key objective of industrials. However, it is well identified that the wiping process reaches its limits at high line speed in general and especially thin coatings. If wiping models predict that it is possible to reach 32-37 g/$m^2$ of pure Zinc at 180 m/min provided the nozzle to strip distance can be reduced to 6mm, the possibility to reach that process window industrially with sufficient robustness is debated. 3 key problems are reviewed and analyzed: Zinc splashing and liquid drop emissions of various forms, the production of skimming and the noise generated by the nozzles. The available data and models are firstly used to predict phenomena. Secondly, videos and pictures from the lines showing what really happens on the edges especially in case of a strip width change are analyzed. Whereas the predicted level of skimming to remove from the pot is expected very high, it turns out that the target may be very close to the full splashing phenomena and that the most critical industrial situation is related to strip specification changes. It is then expected that the industrial feasibility of the 32-37 g/$m^2$ at 180 m/min will depend strongly on the amount of incoming strip with the same width that can be processed continuously.

Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line

  • Kim Chang-Won;Park Hahn;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.601-611
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the Lyapunov second method. The exponential stability of the closed-loop system is verified. The effectiveness of the proposed control law is simulated.

금속용탕면 높이 측정을 위한 거리센서의 특성

  • 이왕하;임태균;박상덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.590-596
    • /
    • 1994
  • In a CGL(Continuous Galvanizing Line) in steel making plants, zinc-coated steel sheets are produced. These sheets are used where long running corrosion resistivity is required. During the coating process top dross is produced, being harmful to the quality of the coating. To collect and remove this top dross, an automation system is developed consisting of a robot and its carriage system, a pot level sensor, a system controller, and specialtools. Forthe first, the level of the pot must be measured and fed back to the robot controller to avoid submersion of the robot hand in the hot pot. In this paper,acoustic and laser distance sensors are tested for the appropriate pot lvel sensor, especially the former in the view point of hot environment.

  • PDF

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.