• Title/Summary/Keyword: zinc bath

Search Result 95, Processing Time 0.025 seconds

A Study on Low Temperature Phosphating for Cold Forming (냉간 가공용 인산염 피막처리의 저온화에 관한 연구)

  • 이만식;정충택;이광호;김준호;이근대;홍성수
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.279-288
    • /
    • 2002
  • Zinc phosphating for cold forming of steel was studied with emphasis on decreasing phosphating temperature. To lower phosphating temperature, some techniques, such as adding Cu ion into bath, using activator in the form of pre-dip, and aeration in bath, instead of using conventional accelerator, namely oxidizing agent, have been tried. It was revealed that phosphating, leading to coatings of Improved uniformity and fine crystal size, can be carried out using above techniques at lower temperature ($55^{\circ}C$) compared to conventional phosphating temperature ($80 ~ 90^{\circ}C$ ). Under present condition, it was seen that optimum concentrations of Cu ion in phosphating bath and activator in pre-dip are 0.015% (w/w) and 2.0 g/1, respectively. The coating weight was within the range of 15 ~ 20 g/$\m^2$. When lubricant was applied into phosphating coatings, the amount of lubricating component (total soap) was found to be 6 ~ 10 g/$\m^2$ and the lubricated panel revealed excellent lubricating properties.

A Study on Low Temperature Phosphating for Cold Forming (냉간 가공용 인산염 피막처리의 저온화에 관한 연구)

  • 이만식;정충택;이광호;김준호;이근대;홍성수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Zinc phosphating for cold forming of steel was studied with emphasis on decreasing phosphating temperature. To lower phosphating temperature, some techniques, such as adding Cu ion into bath, using activator in the form of pre-dip, and aeration in bath, instead of using conventional accelerator, namely oxidizing agent, have been tried. It was revealed that phosphating, leading to coatings of improved uniformity and fine crystal size, can be carried out using above techniques at lower temperature (55$^{\circ}C$) compared to conventional phosphating temperature ($80∼90^{\circ}C$). Under present condition, it was seen that optimum concentrations of Cu ion in phosphating bath and activator in pre-dip are 0.015 % (w/w) and 2.0 g/1, respectively. The coating weight was within the range of $\15∼20 g/m^2$. When lubricant was applied into phosphating coatings, the amount of lubricating component (total soap) was found to be$ 6∼10 g/\m^2$ and the lubricated panel revealed excellent lubricating properties.

The Effect of Electrolysis Condition on the Zinc-Aluminum Composite Electro Plating (Zn-Al系 復合電氣鍍金에 미치는 電解條件의 影響)

  • Ye, Gil-Jae;Gang, Sik-Seong;An, Deok-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.118-126
    • /
    • 1987
  • The Zn-Al composite electroplating was studied by using chloride zinc bath containing metal hydroxides $(Zn(OH)_2,\;Al(OH)_3))$ and aluminium powder. The size of Al powder codeposited in the beaker bath with Al powder of-400 mesh was under 10${\mu}m$. The Zn-Al composite was electro-deposited at 40$^{\circ}C$ in the ranges of current density of 5-50 A/$dm^2$ in the flowing electrolyte. The content of aluminium particles codeposited increased slightly with increasing flow rate of electrolyte from 0.5 m/sec to 1.0 m/sec, and decreased with increasing current density from 5 A/$dm^2$ to 50 A/$dm^2$. The content of aluminium particles codeposited by using the electrolyte containing zinc hydroxide(0.1M) was 2~4 wt%. The Al powder was codeposited mainly near the surface layer of the electrodeposits. The dissolution rate of aluminium particles in the electrolyte containing 0.1M $Zn(OH)_2$ and Boric acid was 0.41 g/l. day in comparison with 1.5 g/l. day dissolution rate in pure chloride bath.

  • PDF

Effects of phosphating bath compositions on the formation and structure of zinc phosphate conversion coatings on magnesium alloy AZ31

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.322-323
    • /
    • 2012
  • This study discussed the formation of phosphate conversion coatings on AZ31 Mg alloy (AZ31) from the zinc phosphating bath with various concentrations of sodium fluoride (NaF). The effects of NaF on the formation, structure, composition and electrochemical behavior of the phosphate coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) weight balances, open circuit potential (OCP) transients, potentiodynamic polarization curves and immersion test. The coatings were composed of two layers: an outer $Zn_2(PO_4)_3.4H_2O$ (hopeite) crystal layer and an inner amorphous of $MgZn_2(PO_4)_2$. NaF concentration is emphasized to be highly effective in the formation of the hopeite crystal and etching and coating rates. Potentiodynamic polarization and immersion test showed that the coatings formed in the zinc phosphating bath with addition of NaF have much higher corrosion resistance than bare AZ31.

  • PDF

Effect of Ultrasonic Wave on the Nickel-Zine Alloy Deposition whit the Variation of Ammonium Chloride Concertration (Ni-Zn 함금도금에서 염화암몬 농도에 따른 초음파의 영향)

  • 양학희;고광진;김재원
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.4
    • /
    • pp.168-175
    • /
    • 1988
  • The nickel0zinc allot depositions have been studjen in ammonium chloridw added chloride baths to fine out the effects of ultrasonic irradiation for the electrodeposition processes. The compositions of deposited alloys, the current efficiencies, corrosion resistance and brightness in various conditions of electrodeposition were investigated, in the range of ultrasonic irradiation of 50,500 and 1,000kc/s respectively. The results obtained are as follows; 1. the ratio of nikel to zinc in the deposit increased according 시 the ammonium chloride concentration in irradiated baths. 2. The current efficiencies became also higer in the irradiated bath. 3. Ammonium ions in solution seem to retard formation of zinc hydroxide. 4. The corrsion resistance and brightness of the deposits are dependent upon nickel content of deposits which ranges 10-18%(wt)nickel in the irradiated baths and 11-15%(wt)in ninirradisted baths. 5. The corrosion resistance and brightnes of the deposited are appreciably better in the irradiated baths than in non-irradiated bath with the mole ratio of 3.4(NH+4/Ni+++Zn++).

  • PDF

Effect of Nickel Addition in Hot Dip Galvanizing of Mini-mill Steels Containing Silicon (실리콘을 함유한 미니밀 소재의 용융아연도금성에 미치는 니켈첨가의 영향)

  • Lee, H.J.;Kim, J.S.;Chung, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • In this study the effect of nickel addition on the coating weight of mini-mill steels containing silicon has been studied. It is shown that the pure zinc accelerated growth of the alloy layers occurred by a rapid growth of the zeta phase at 0.06%Si. The addition of 0.06%Ni to a pure zinc bath was found to be very effective in reducing the coating weight and promoting preferential development of the delta phase. The coating obtained by immersion in the Zn-Ni bath shows the presence of a nickel-rich region between the zeta phase and the eta phase. It is suggested that nickel prevents the rapid growth of the zeta phase due to the formation of the Zn-Ni-Fe ternary compound, which may act as a barrier to inward diffusion of zinc or iron at the zeta-eta boundary.

  • PDF

Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits (Zn-Ni도금의 합금화에 미치는 전류밀도, 온도와 전해액농도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.307-312
    • /
    • 2017
  • In the industry, galvanizing using the principle of sacrificial anode is used Zn-Ni alloy plating was developed as one of the measures to increase the corrosion resistance rather than pure zinc plating. The alloy plating layer has a corrosion resistance of 4-5 times that of the pure zinc plating layer, so that it is applied to automotive parts requiring high corrosion resistance even though the plating cost is high. The amount of Zn-Ni alloy plating solution is a sulfuric acid bath, a chlorinated bath, an alkali bath, and an ammonia bath. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage and the diffusion coefficient. In general, as the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. The concentration polarization is determined by element diffusion in the diffusion layer. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Properties of the ZnS Thin Film Buffer Layer by Chemical Bath Deposition Process with Different Solution Concentrations and Deposition Time (화학습식공정법을 이용한 용액 농도 및 시간에 따른 ZnS 완충층 특성에 대한 분석)

  • Son, Kyeongtae;Kim, Jongwan;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.269-275
    • /
    • 2014
  • In this study, chemical bath deposition method was used to grow Zinc sulfide(ZnS) thin films from $NH_3/SC(NH_2)_2/ZnSO_4$ solutions at $90^{\circ}C$. ZnS thin films have been prepared onto ITO glass. The concentrations of $ZnSO_4$ and $NH_3$ were varied while the concentration of Thiourea was fixed in 0.52 M. Structural, optical, electrical characteristic of ZnS thin films were measured. The physical and optical properties of different ZnS thin films were influenced severely by the concentration of the two reacting chemicals. The optimal concentration of $ZnSO_4$ and $NH_3$ was 0.085 M and 1.6 M, respectively.