• 제목/요약/키워드: zinc basis functions

검색결과 4건 처리시간 0.022초

Novel Spectrally Efficient UWB Pulses Using Zinc and Frequency-Domain Walsh Basis Functions

  • Chaurasiya, Praveen;Ashrafi, Ashkan;Nagaraj, Santosh
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.397-405
    • /
    • 2013
  • In this paper, two sets of spectrally efficient ultra-wideband (UWB) pulses using zinc and frequency-domain Walsh basis functions are proposed. These signals comply with the Federal Communications Commission (FCC) regulations for UWB indoor communications within the stipulated bandwidth of 3.1 GHz to 10.6 GHz. They also demonstrate high energy spectral efficiency by conforming more closely to the FCC mask than other UWB signals described in the literature. The performance of these pulses under various modulation techniques is discussed in this paper, and the proposed pulses are compared with Gaussian monocycles in terms of spectral efficiency, autocorrelation, crosscorrelation, and bit error rate performance.

Intercalation of Functional Organic Molecules with Pharmaceutical, Cosmeceutical and Nutraceutical Functions into Layered Double Hydroxides and Zinc Basic Salts

  • 황성호;한양수;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.1019-1022
    • /
    • 2001
  • Negatively charged functional organic molecules such as retinoic acid, ascorbic acid, indole acetic acid, citric acid, salicylic acid, acidic dye (indigo carmine, Food Blue 1) are intercalatively encapsulated by zinc basic salt (hydrozincite) and layered double hydroxide. Such functional organic-inorganic nanohybrids are realized via coprecipitation reaction involving simultaneous formation of layered inorganic lattice and intercalation of anionic species. The heterostructural nature of these nanohybrids, their particle morphology and textural characterizations are mainly discussed on the basis of Powder X-ray Diffraction and Field Emission Scanning Electron Microscopy results.

테스토스테론생성 레이디히세포(Leydig)에서의 메탈로치오닌 유전자 발현특성연구 (Expression of Metallothionein mRNA in Cadmium Treated Leydig Cells)

  • 박광식
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.261-269
    • /
    • 2004
  • Although the biological functions of metallothioneins (MTs) are still being investigated, they have been suggested to be involved in detoxification of heavy metals, scavenging of free radicals, and protection against alkylating agents. MTs have been reported to be induced in most of animal tissues by heavy metals such as zinc, copper, mercury and cadmium, and the proteins have binding affinities to the metals. However, the presence or induction of MTs was reported not to be clear in leydig cells, which produce testosterone for the maturation of spermatozoa in male testes. In this study, we investigated the inducibility of metallothionein isomers by cadmium in cultured mouse leydig cells. Total RNA was extracted from the near confluent grown leydig cells and RT-PCR was Performed using the Primers which were synthesized on the basis of MT-1, 2, 3 and 4 cDNA from GenBank database. As results, MT-1 and MT-2 mRNA were found to be expressed in cadmium non-treated control cells and MT 1 mRNA expression was dose-dependent when leydig cells were treated with cadmium chloride. But MT-3 which is known to be brain specific and MT-4 which is another isoform of metallothionein, were not expressed. Other genes induced or depressed in cadmium treated leydig cells were also identified by microarray techniques.

A $G_{4}$ Sequence within PHR1 Promoter Acts as a Gate for Cross-Talks between Damage-Signaling Pathway and Multi-Stress Response

  • Jang, Yeun-Kyu;Kim, Eun-Mi;Park, Sang-Dai
    • Animal cells and systems
    • /
    • 제6권3호
    • /
    • pp.271-275
    • /
    • 2002
  • Rph1 and Gisl are damage-responsive repressors involved in PHR1 expression. They have two $C_{2}$H/ sub 2/ zinc finger motifs as putative DNA binding domains and N-terminal conserved domain with unknown function. They are also found in the human retinoblastoma binding protein 2 and the mouse jumonji- encoded protein. The repressors are able to bind to A $G_{4}$ sequence within a 39-bp sequence called upstream repressing sequence of PHR1 promoter (UR $S_{PHR1}$) responsible for the damage-response of PHR1. We report here that Rph1 is predominantly localized in the nucleus as examined by fluorescence microscopic analysis with GFP-Rph1 fusion protein. On the basis of the fact that the A $G_{4}$ sequence that is recognized by Rph1 and Gisl is also recognized by Msn2 and Msn4 in a process of stress response, we a1so tried to examine the in vivo function of A $G_{4}$ and the role of Msn2 and Msn4 in PHR1 expression. Our results demonstrate that Msn2 and Msn4 are actually required for the basal transcription of PHR1 expression but not for its damage induction. When A $G_{4}$ sequence was inserted into the minimal promoter of the cyc1-LacZ reporter, the increased LacZ expression was observed indicating its involvement in transcriptional activation. The data suggest that the A $G_{4}$ is primarily required for basal transcriptional activation of PHR1 or CYC1 promoter through the possible involvement of Msn2 and Msn4. However, since the A $G_{4}$ is also involved in the repression of PHR1 via Rphl and Gisl, it is proposed that A $G_{4}$ functions as either URS or upstream activating sequence (UAS) depending on the promoter context.t.