• Title/Summary/Keyword: zigbee reader

Search Result 8, Processing Time 0.028 seconds

A Design and Implementation of Information System Using Zigbee Technology (Zigbee 모바일단말 하드웨어 설계와 정보시스템 구축)

  • Ha, Kyeoung-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2009
  • We show the way how to design and develop the information system using Zigbee technology. First we set the protocol for zigbee tag and reader. And then we give the information system using designed system based on zigbee technology. In this paper, we use MG2455-F48 module as zigbee module.

Mobile Information System using Zigbee Technology (지그비를 이용한 모바일정보 시스템)

  • Park, Se Hyun;Ku, Kyo Min;Ha, Kyeoung-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2014
  • Zigbee is a wireless communication technology optimized for Wireless Sensor Network environment. Implementation of location estimation system is based on Zigbee. In this paper, we implement mobile information system using zigbee technology. The proposed system is composed of mobile terminal software and mobile reader softwrae. We also used our hardware in previous system.

RFID System with Localization Function Based on Zigbee RSSI (Zigbee RSSI 기반의 위치추정 기능을 탑재한 RFID 시스템)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1201-1208
    • /
    • 2016
  • Radio Frequency Identification (RFID) technology has a significant attraction throughout various industry sites, along with the development of wireless communication technologies. The typical applications of RFID include medical, logistics, and distribution, and, specially, it is effectively applied to non-contact environments, because it employs radio waves. Although, recently, construction cases of the RFID management systems for the inventory management of the construction materials have been increased, the related researches and experiments for the reused materials are not actively performed. In this paper, we propose the RFID system with the localization function for effectively managing the reuse of the construction materials, adding to the conventional inventory management system. The proposed system consists of a RFID reader unit and a receiver unit, and the location information of the material with the attached RFID tag is obtained by estimating the position of a RFID reader. The distance value for estimating the reader position is calculated using the Received Signal Strength Indicator (RSSI) value of Zigbee, and the performance evaluation of the proposed system is performed in the indoor space of $5m{\times}5m$.

A Study on the Implementation of the Wireless Sensor Network System on Shipboard (선박 내 무선 센서 네트워크 시스템 구현에 관한 연구)

  • Ha, Yeon-Chul;Back, Dong-Won;An, Byung-Hun;Ko, Bong-Jin;Chung, Suk-Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • In this paper, a wireless sensor network system was embodied inside the shipping for digital ship. First, the analysis of radio environment inside ship are investigated. As a result, it was confirmed that a wireless sensor network system can be applied inside the ship. Using Shipboard Wireless Sensor Network System based on IEEE 802.15.4 technique, we designed, and made the prototype of Zigbee Node and RFID Reader. We could be sensing on shipboard and testing entrance of crew by using Zigbee Node and RFID Reader. The sensing and exit or entry control data are transmitted a server system through internet that connected Wireless Gateway with AP, so we can monitoring the saved data on shipboard database.

  • PDF

Design and Implementation of a Ubiquitous Health Care System based on Sensor Network (센서네트워크에 기반한 유비쿼터스 헬스케어 시스템의 설계 및 구현)

  • Kim, Jeong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.143-151
    • /
    • 2008
  • In this paper, we have implemented a ubiquitous healthcare system that can measure and check human's health in anytime and anywhere. The implemented prototype are composed of both front-end and back-end. The front-end have several groups: environment sensor group such as temperature, humidity, photo, voice sensor, health sensor group such as blood pressure, heart beat, electrocardiogram, spo2 sensor, gateway for wired/wireless communication, and RFID reader to identify personal. The back-end has a serial forwarder to propagate measurment results, monitor program, and medical information server The implemented sensor node constructs a sensor network using the Zigbee protocol and is ported the tinyOS. The data gathering base node is linux-based terminal that can transfer a sensed medial data through wireless LAN. And, the medical information server stores the processed medical data and can promptly notify the urgent status to the connected medical team. Through our experiments, we've confirmed the possibility of ubiquitous healthcare system based on sensor network using the Zigbee.

Design and Implementation of a ubiquitous health care system (유비쿼터스 헬스 케어 시스템의 설계 및 구현)

  • Kim, Jeong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.921-924
    • /
    • 2007
  • In this paper, we have implemented a ubiquitous healthcare system that can measure and check human's health in anytime and anywhere. The implemented prototype are composed of both front-end and back-end. The front-end have several groups: environment sensor group such as temperature, humidity, photo, voice sensor, health sensor group such as blood pressure, heart beat, electrocardiogram, spo2 sensor, gateway for wired/wireless communication, and RFlD reader to identify personal. The back-end has a serial forwarder to propagate measurment results, monitor program, and medical information server. The implemented sensor node constructs a sensor network using the Zigbee protocol and is ported the TinyOS. The data gathering base node is linux-based terminal that can transfer a sensed medial data through wireless LAN. And, the medical information server stores the processed medical data and can promptly notify the urgent status to the connected medical team. Through our experiments, we've confirmed the possibility of ubiquitous healthcare system based on sensor network using the Zigbee.

  • PDF

An Adaptive Middleware for U-healthcare System (유헬스케어 시스템을 위한 적응형 미들웨어)

  • Kim, Jae-Yeol;Kim, Yong-Hwan;Ahn, Kwang-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.291-295
    • /
    • 2007
  • 본 논문에서는 유헬스를 위한 적응형 미들웨어를 제안한다. 제안하는 적응형 미들웨어의 특징은 USN(Ubiqitous Sensor Network)과 RFID를 동시에 지원하는 미들웨어로 다음과 같은 특징을 가진다. 첫째, 사용자 인식수단으로 RFID 태그와 Zigbee sensor를 동시에 지원한다. 둘째, RFID Reader와 Zibee 센서가 수집한 데이터를 filtering하여 주기적으로 응용 프로그램에 전달한다. 셋째, 이동하는 사용자에 대하여 realtime health monitoring을 지원한다.

  • PDF

Real-Time Construction Resource Monitoring using RFID/USN Inter-working System (RFID/USN 연동 시스템을 활용한 건설자원 실시간 모니터링 시스템)

  • Ryu, Jeoung-Pil;Kim, Hyoung-Kwan;Kim, Chang-Yoon;Kim, Chang-Wan;Han, Seung-Heon;Kim, Moon-Kyum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.90-94
    • /
    • 2007
  • Location tracking automation of resources in construction industry is one of the most important procedures to improve construction project performance and reduce the period of construction. Recently, location tracking technologies have proven to be effective in tracking construction materials and equipment in real time through the instrumentality of RFID (Radio Frequency Identification). By using wireless communication and inter-working system between RFID and USN, it is possible that construction engineers receive the location information of construction resources without additional efforts that move the RFID reader to read tags periodically. In the inter-working system, RFID reader delivers the acquired materials information to sensor node which is connected by serial interface. Then sensor node transmits the received data to the data aggregation terminal that is a sink node. The data aggregation terminal can transmit collected data to construction manager who is out of construction site using infrastructure such as CDMA(Code Division Multiple Access) network. The combination model of the two system and field test scenarios are presented in this paper.

  • PDF