• Title/Summary/Keyword: zeta potential value

Search Result 119, Processing Time 0.027 seconds

Influence of Zeta Potential on Fractional Precipitation of (+)-Dihydromyricetin ((+)-Dihydromyricetin 분별침전에 미치는 제타전위의 영향)

  • Ha, Geon-Soo;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.831-835
    • /
    • 2015
  • This study evaluated the influence of the zeta potential of silica-alumina on the behavior in terms of purity, yield, and precipitate shape and size of fractional precipitation in the fractional precipitation process for the purification of (+)-dihydromyricetin. The optimal silica-alumina amount (surface area per working volume of reacting solution) for zeta potential control was $100mm^{-1}$. As the zeta potential value of silica-alumina increased, (+)-dihydromyricetin yield and precipitate size were increased. The use of silica with the highest value of the zeta potential (+4.99 mV) as a zeta potential-controlling material increased the (+)-dihydromyricetin yield by 2-fold compared with that of the use of alumina with the lowest value of the zeta potential (-19.00 mV). In addition, the (+)-dihydromyricetin yield and precipitate size was inversely correlated with the absolute value of the zeta potential. On the other hand, the purity of (+)-dihydromyricetin had almost no effect on changes in the zeta potential of silica-alumina.

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung;Kim, Jin Wook;Lee, Mee-Ryung;Jun, Woojin;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.420-427
    • /
    • 2015
  • It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

Effect of Zeta Potential on Fractional Precipitation for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis (주목 식물세포(Taxus chinensis) 배양 유래 Paclitaxel 정제를 위한 분별침전에서 제타전위 영향)

  • Ryu, Heung Kon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • This study evaluated the effect of the zeta potential of silica-alumina on the behavior, in terms of purity, yield, fractional precipitation time, precipitate shape, size of fractional precipitation in the increased surface area, and the fractional precipitation process, for the purification of paclitaxel. As the zeta potential value of silica-alumina increased, the yield of paclitaxel concurrently increased while the precipitation time decreased. The use of alumina with the highest value of the zeta potential (+35.41 mV) as a surface area-increasing material dramatically reduced the precipitation time by 12 h compared with the results of the control. On the other hand, the purity of paclitaxel had almost no effect on changes in the zeta potential of silica-alumina. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

The Relationship between Electroosmotic Drainage and Zeta Potential of Contaminated Clayey Soil with Heavy Metal (중금속 오염 점성토의 전기삼투 배수와 제타포텐셜의 상관성)

  • 임성철;한상재;김정환;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.455-460
    • /
    • 2000
  • This research is about the relationship of electroosmotic drainage and zeta potential. Two laboratory experiments were conducted, at first a constant 16 voltage was applied to the cylindrical consolidated specimen of 10cm in diameter, 16cm in length at the concentration of 0, 500, 3000ppm Pb(II) and electroosmotic flow was measured for 12days. Then, zeta potential of kaolinite suspension was measured at the same concentration of electroosmotic permeability experiments in the range of pH from 2 to 14. From the result of this study, it was shown that zeta potential was dependent on the concentration of electrolyte and pH, was proportional to coefficient of electroosmotic permeability. According to the compared result of electroosmotic drainage, as the concentration of Pb(II) was low, the negative value of zeta potential was high and electroosmotic total flow was much.

  • PDF

Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index

  • Hong, In Kwon;Kim, Su In;Lee, Seung Bum
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.123-131
    • /
    • 2018
  • Using mixed nonionic surfactants Span/Tween, we investigated the effects of HLB value on the O/W emulsion stability and rheological behaviors. In this study, MS-01 (Span 60 & Tween 60) and MS-02 (Span 80 & Tween 80) was used as mixed nonionic surfactants. We considered required HLB value 10.85 and selected corresponding HLB value range 8-13. The droplet size distributions, droplet morphology, rheological properties, zeta-potential and creaming index of the emulsion samples were obtained to understand the mechanism and interaction of droplets in O/W emulsion. The results indicated that optimal HLB number for O/W emulsions was 10.8 and 10.7, while using MS-01 surfactant and MS-02 surfactant respectively. MS-01 (HLB = 10.8) sample and MS-02 (HLB = 10.7) sample showed smallest droplet size and highest zeta-potential value. Rheological properties are measured to understand rheological behaviors of emulsion samples. All emulsion samples showed no phase separation until 30 days storage time at $25^{\circ}C$.

Effect of Zeta-Potential on the Viscosity of Clay-Water Suspension

  • Lee, Young-Seek;Ree, Jong-Baik;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.83-88
    • /
    • 1982
  • Viscosity and zeta-potential of 11.0 wt. % aqueous bentonite suspension containing various electrolytes and hydrogen-ion concentration were measured by using a Couette type automatic rotational viscometer and Zeta Meter, respectively. The effects of pH and elcctrolytes on the rheological properties of the suspension were investigated. A system, which has a large zeta-potcntial, has a small intrinsic relaxation time ${\beta}$ and a small intrinsic shear modulus $1/{\alpha}$ in the Ree-Eyring generalized viscosity equation, i.e., such a system has a small viscosity value, since ${\eta}={\beta}/{\alpha}$. In general, a stable suspension system has large zeta-potential. The stability condition of clay-water suspension can be estimated by viscometric method since stable suspension generally has small viscosity. The correlation between the stability, viscosity and zeta-potential has been explained by the Ree-Eyring theory of viscous flow.

Dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium

  • Chun, M.P.;Chung, Y.B.;Ma, Y.J.;Cho, J.H.;Kim, B.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.239-243
    • /
    • 2005
  • The effect of pH and particle size on the dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium have been investigated by means of zeta potential, sediment experiments, and powder properties (particle analysis, specific surface area) etc. Zeta potential as a function of pH for two particles of different size increases from -75 to +10 mV with decreasing pH from 8.5 to 1.4. The curve of zeta potential for small particle (150 nm) has slow slope than that of large particle (900nm), giving IEP (isoelectric point) value of pH=1.6 for small particle and pH=1.9 for large particle respectively, which means that it is more difficult to control zeta potential with pH fur small particle than large particle. The dispersion stability of $BaTiO_3$ particles in aqueous medium was found to be strongly related with the agglomeration of colloidal suspensions with time through the sedimentation behaviors of colloidal particles with time and pH value.

The Effect of Magnesium and Aluminium Ions on Zeta Potential of Bubbles (수중의 마그네슘과 알루미늄 이온이 기포의 제타전위에 미치는 영향)

  • Han, Moo-Young;Ahn, Hyun-Joo;Shin, Min-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.573-579
    • /
    • 2004
  • Electroflotation, which is used as an alternative to sedimentation, is a separation treatment process that uses small bubbles to remove low-density particulates. Making allowances for recent collision efficiency diagram based on trajectory analysis, it is necessary to tailor zeta potential of bubbles that collide with negatively charged particles. In this paper, the study was performed to investigate the effects of magnesium and aluminium ions on zeta potential of bubbles. And, it was studied to find out factors which could affect the positively charged bubbles. Consequently, zeta potential of bubbles increased both with higher concentration of metal ions and in the acidic pH value. And, a probable principle that explained the procedure of charge reversal could be a combined mechanism with both specific adsorption of hydroxylated species and laying down of hydroxide precipitate. It also depended on the metal ion concentration in the solution to display its capacity to control the bubble surface.

Early Hydration of Tricalcium Silicate(III) (Tricalcium Silicate의 초기수화반응(III))

  • 오희갑;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.385-391
    • /
    • 1987
  • Zeta potential according to the hydration time was studied during the early hydration of C3S with and without CO2 atmosphere. Zeta potential was low as a level of 20mV at the first and second exothermic peaks of heat evolution, but it was rapidly increased up to a level of 300mV. In the CO2 atmosphere, zeta potential was level of 60mV at 10 minutes hydration and it's value became a low gradually according to the hydration time. Zeta potential was also proportioned to the Ca2+ concentration in the liquid phase, i.e., there was positive correlation between zeta potential and Ca2+ concentration. The existence of silicate layer was not found out on the hydrated C3S in the CO2 atmosphere by SEM-EDAX.

  • PDF

Emulsion Stability of Cosmetic Facial Cream O/W Emulsions Prepared by Brij Type Non-ionic Emulsifie (Brij계 비이온성 혼합유화제를 이용하여 제조된 화장용크림 O/W 유화액의 유화안정성)

  • Park, Bo Ra;Lee, Seung Min;Choi, Junho;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.440-445
    • /
    • 2018
  • In this study, the stability of O/W cosmetic facial cream emulsions according to HLB values was evaluated by mixing nonionic surfactants, such as Brij 78&72 and Brij 98&92. Brij 78&72 (steareth-20&steareth-2, EMS-01), saturated fatty acid, and Brij 98&92 (oleth-20&oleth-2, EMS-02), unsaturated fatty acid, were used as mixed surfactants. The stability of the O/W emulsion was evaluated by using the emulsion viscosity, particle size, particle size distribution, and zeta-potential. The viscosity of the emulsion increased with the increase of time for EMS-01 while that of EMS-02 decreased with the increase of HLB value. The particle size of both EMS-01 and EMS-02 increased with time. The emulsifier with a HLB value of 10.8, which is the most similar to the required HLB value of mineral oil, 10.5, had the smallest particle size and highest density and also showed the highest emulsion stability. The zeta-potential of both emulsions tended to increase with the HLB value. No significant changes were observed in emulsions of the HLB value of 10.8 or more. The saturated fatty acid system, EMS-01, exhibited a higher zeta-potential value than that of the unsaturated fatty acid EMS-02 and also was superior in the stability.