• 제목/요약/키워드: zero-voltage switching

검색결과 854건 처리시간 0.021초

새로운 영전류 스위칭 방식의 PWM 컨버터 (New Zero-Current-Switching PWM Converters)

  • 마근수;김양모
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권9호
    • /
    • pp.467-472
    • /
    • 2001
  • In conventional zero-current-switching(ZCS) PWM converters, zero-current turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can\`t be minimized because they adopt auxiliary switches turned off and main switches turned on under hard-switching condition. In this paper, new ZCS-PWM converters of which all switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZCS-PWM converters are most suitable for systems requiring high-power density Breadboarded ZCS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

  • PDF

단일 스위치를 사용한 소프트 스위칭 부스트 컨버터 (Soft Switching Boost Converter using a Single Switch)

  • 정두용;김재형;지용혁;원충연;정용채
    • 전력전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.211-219
    • /
    • 2009
  • 이 논문에서는 단일 스위치를 사용하여 영전류 또는 영전압 스위칭 하는 부스트 컨버터를 기술하였다. 제안된 토폴로지는 소프트스위칭 함으로써 IGBT소자의 스위칭 손실을 감소시킬 수 있다. 이에 따라 수동소자의 크기와 무게를 줄일 수 있다. 모드 해석을 근거로 하여 실제적인 고려되어야할 설계를 제시하였다. 컨버터 토폴로지 동작원리를 설명하고 PSIM 소프트웨어 설계를 통하여 시뮬레이션 결과를 확인하였다. 제안된 컨버터의 성능은 30kHz에서 동작하는 1kW(400V, 2.5A) 실험실수준 레벨에서 증명하였다.

고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터 (A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method)

  • 김홍신;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

무전극 램프 구동용 영전압 스위칭 고주파 인버터에 관한 연구 (Zero-Voltage-Switching High Frequency Inverter for Electrodeless Fluorescent Lamp)

  • 박동현;김희준;조기연;계문호
    • 전자공학회논문지S
    • /
    • 제35S권8호
    • /
    • pp.113-119
    • /
    • 1998
  • 무전극 램프의 점등은 램프 양단에 고주파를 갖는 고전압을 인가해야 한다. 종래의 무전극 램프의 구동 회로로 선형 증폭기가 이용되어져 왔으나, 낮은 에너지 변환 효율로 인해 PWM 스위칭 방식의 인버터로 교체되고 있다. 그러나 고주파 스위칭시 인버터의 스위칭 소자에서 스위칭 손실의 증가 및 노이즈 발생의 문제로 인해 PWM 인버터는 고주파 동작이 제한된다. 이러한 문제점을 해결하기 위해 영전압 스위칭 기술을 PWM 인버터에 적용하여 고주파 스위칭이 가능하게 하고, 또한 스위칭 손실과 노이즈 발생을 줄일 수 있다. 본 논문에서는 무전극 램프 구동회로로 영전압 스위칭 고주파 인버터에 대하여 동작 해석과 설계 지침 제시하였다. 또한, 실험을 통하여 해석된 결과의 타당성을 확인하였다.

  • PDF

보조 회로의 전압 스트레스를 저감한 ZVZCS Three-Level DC/DC 컨버터에 관한 연구 (ZVZCS(Zero-Voltage and Zero-Current-Switching Three-Level DC/DC Converter reducing voltage stress of auxiliary circuit)

  • 배진용;김용;백수현;조규만;최근수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.172-174
    • /
    • 2005
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level DC/DC Convertor reducing voltage stress of auxiliary circuit is proposed. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW 40kHz IGBT based experimental circuit.

  • PDF

Full ZVS Load Range Diode Clamped Three-level DC-DC Converter with Secondary Modulation

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.93-101
    • /
    • 2016
  • A new four-primary-switch diode clamped soft switching three-level DC-DC converter (TLDC) with full zero-voltage switching (ZVS) load range and TL secondary voltage waveform is proposed. The operation principle and characteristics of the presented converter are discussed, and experimental results are consistent with theoretical predictions. The improvements of the proposed converter include a simple and compact primary structure, TL secondary rectified voltage waveform, wide load range ZVS for all primary switches, and full output-regulated range with soft switching operation. The proposed converter also has some disadvantages. The VA rating of the transformer is slightly larger than that of conventional TLDCs in variable input and constant output mode. The conduction loss of the primary coil is slightly higher because an air gap is inserted into the magnetic cores of the transformer. Finally, the secondary circuit is slightly complex.

Analysis and Implementation of a Half Bridge Class-DE Rectifier for Front-End ZVS Push-Pull Resonant Converters

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.626-635
    • /
    • 2013
  • An analysis of the junction capacitance in resonant rectifiers which has a significant impact on the operating point of resonance circuits is studied in this paper, where the junction capacitance of the rectifier diode is to decrease the resonant current and output voltage in the circuit when compared with that in an ideal rectifier diode. This can be represented by a simplified series resonant equivalent circuit and a voltage transfer function versus the normalized operating frequency at varied values of the resonant capacitor. A low voltage to high voltage push-pull DC/DC resonant converter was used as a design example. The design procedure is based on the principle of the half bridge class-DE resonant rectifier, which ensures more accurate results. The proposed scheme provides a more systematic and feasible solution than the conventional resonant push-pull DC/DC converter analysis methodology. To increase circuit efficiency, the main switches and the rectifier diodes can be operated under the zero-voltage and zero-current switching conditions, respectively. In order to achieve this objective, the parameters of the DC/DC converter need to be designed properly. The details of the analysis and design of this DC/DC converter's components are described. A prototype was constructed with a 62-88 kHz variable switching frequency, a 12 $V_{DC}$ input voltage, a 380 $V_{DC}$ output voltage, and a rated output power of 150 W. The validity of this approach was confirmed by simulation and experimental results.

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.

전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구 (A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control)

  • 곽동걸;김춘삼
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

Zero-Voltage-Transition Synchronous DC-DC Converters with Coupled Inductors

  • Rahimi, Akbar;Mohammadi, Mohammad Reza
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.74-83
    • /
    • 2016
  • A new family of zero-voltage-transition converters with synchronous rectification is introduced in this study. Soft switching condition for all the converter operating points is provided in the proposed converters. The reverse recovery losses of the rectifier switch body diode are also eliminated. In comparison with the main switch voltage stress, the auxiliary switch voltage stress is reduced significantly. The auxiliary switch does not need the floating gate drive. The auxiliary inductor is coupled with the main converter inductor, and the leakage inductor is used as the resonance inductor. Thus, all inductors of the proposed converter can be implemented on a single core. The other features of the proposed converters include no extra voltage and current stresses on the main converter semiconductor elements. Theoretical analysis for a synchronous buck converter is presented in detail, and the validity of the theoretical analysis is justified with the experimental results of a prototype buck converter with 180 W and 80 V to 30 V.