• Title/Summary/Keyword: zero-loss

Search Result 523, Processing Time 0.034 seconds

Soft Switching Boost Converter using a Single Switch (단일 스위치를 사용한 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • In this paper, a detailed analysis of zero current or zero voltage switching boost converter using a single switch is described. The proposed topology is capable of decreasing switching loss of IGBT device using soft switching technique. As a results, it can be reduced size and weight of passive elements. Based on the mode analysis, practical design considerations are presented. We confirm the converter topology, principle of operation and simulation results obtained from the PSIM software. The performance of the proposed converter is verified by with 1kW(400V, 2.5A) prototype circuit operated at 30kHz.

The output characteristics of pulsed Nd:YAG laser using Zero Crossing method (Zero Crossing 방식을 이용한 펄스형 Nd:YAG 레이저의 출력 특성)

  • Hong, J.H.;Moon, D.S.;Noh, K.K.;Kim, W.Y;Kang, Uk;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2104-2106
    • /
    • 2000
  • For general laser power supply. output of the secondary of the power transformer is connected to the rectifier and filter capacitor. The output of a rectifier is applied to a switching element in the secondary of the transformer. So, power supply is complicated and the loss of switching is considerably. In addition, according to increasing pulse repetition. charged energy of energy storage capacitor is not transferred sufficiently to flashlamp. and laser output efficiency decreases. In this paper, to improve laser efficiency. we designed and fabricated the power supply in which the SCR was turned on in zero point by the method of ZCC(zero crossing control)in result, laser output efficiency in creased by about 3.5% other than conventional supply. when a repetition rate was increased by 10[pps]. In 60[pps]. efficiency was about 20%.

  • PDF

Clamp mode forward multi-resonant conveter with synchronous rectifier (동기 정류기를 이용한 클램프 모드 포워드 다중 공진형 컨버터)

  • 안강순;김희준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.112-120
    • /
    • 1997
  • The clamp mode (CM) forward zero voltage switching multi resonant converter (ZVS-MPC) with self-driven synchronous rectifier is studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET piecewise linear model and is compared with the loss at the conventional schottky diode rectification stage of th econverter. From the results of the analysis, it is known that the use fo MOSFETs as a synchronous rectifier reduces the loss at the rectification stage overthe whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validit of the analysis, we have built a 33W(3.3V/10A) CM forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. FRom the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

A study on Iron Loss Measurement In Electric Machines (데이터 분석 알고리즘을 이용한 철손 측정(2차원 B-H 관계))

  • Lee, Dong-Hyun;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2347-2349
    • /
    • 2004
  • The iron loss in electric machines takes large part of machine losses and the reduction of iron loss brings the increase of the efficiency. In the rotating machines, however it is very difficult to calculate result because the measuring processes are very complex and laborious. As is well known, the relation between the flux density B and the magnetic field intensity H relation is not linear. For the iron loss, B and H must be measured and usually B becomes the reference wave(sine wave) and the following H is measured using H-coil. To make the B as sine wave, B is controlled by some devices. The error is controlled to become zero by the proposed algorithm which uses the bisection algorithm. The experiments are compared with the simulation results, and they show acceptable agreements.

  • PDF

A Comparative Study of Operation characteristics of Active Clamp Forward Converter Based on Loss Analysis (손실해석을 통한 능동 클램프 포워드 컨버터의 동작 특성비교)

  • Oh, Deog-Jin;Kim, Hee-Jun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2039-2041
    • /
    • 1998
  • In this paper, Operation characteristics of the active clamp(ACL) zero-voltage-switching(ZVS) forward converter(FC) and active clamp hard- switching(HS) forward converter are compared with respect to loss analysis. The losses of semiconductor (including conduction losses and switching losses), transformer(containing the core loss and copper loss) and parasitic element of passive element (capacitor, inductor) are measured and compared for each type. For an experiment we have built 50W ACL ZVS-FC and ACL HS-FC, in which the switching frequency is 200kHz, and test it. The experimental results show that both types of operation have nearly same characteristics.

  • PDF

Prediction of Core Loss Including Higher Harmonic Inductions Using Two Symmetrical AC Minor Loops

  • Son, Derac
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • For the induction motor and inverter type motor design, prediction and analysis of core loss including higher harmonics have been studied. In this work, we have generated two symmetrical ac minor loop in the fundamental hysteresis loop whose positions are zero induction region and saturation induction region, and we could pre-dict core loss including higher harmonics inductions. using the following modified superposition principle; $P_c(B_0,f_0,B_h,nf_0)=P_c(B_0,f_0)+(n-1)[K_1(B_0)P_{cL}(B_h,nf_0)+(1-k_1(B_0))P_{cH}(B_h,nf_0)].$Using this equation we could also analyze core losses including higher harmonic induction under different maximum magnetic induction, different amplitude of higher harmonic induction with different harmonic frequencies.

MIMO-FTN Transceiver Structure Using W-ZF Method (W-ZF 기법을 이용한 MIMO-FTN 송수신 구조 연구)

  • Seo, Jung-hyun;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1291-1298
    • /
    • 2017
  • In this paper, we propose a decoding method that improves the transmission rate and reliability by integrating MIMO(Multiple Input Multiple Output) communication scheme using turbo code and FTN(Faster Than Nyquist) scheme among high rate and high reliability wireless communication schemes in wireless communication. The existing MIMO-FTN(Multiple Input Multiple Output-Faster Than Nyquist) scheme based on hierarchical space-time coded method induced data rate loss due to the application of the space-time trellis coding scheme to remove adjacent symbol interference due to FTN scheme. To solve these problems, this paper proposes a method using W-ZF(Weighted-Zero Forcing) which overcomes the disadvantages of ZF(Zero Forcing) scheme in MIMO-FTN scheme using ZF scheme. In this paper, we compared the performance and the transmission rate of the MIMO-FTN scheme based on the hierarchical space-time coding, the MIMO-FTN scheme using W-ZF and the SISO-FTN scheme. As a result, the MIMO-FTN scheme using the W-ZF scheme is two times better than the other two schemes.

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

A Zero Voltage Switching Phase Shift Full Bridge Converter with Separated Primary Winding

  • Kim, Young-Do;Kim, Chong-Eun;Cho, Kyu-Min;Park, Ki-Bum;Cho, In-Ho;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.379-381
    • /
    • 2008
  • Generally additional leakage inductance and two clamp diodes are adopted into the conventional phase shift full bridge (PSFB) converter for reducing the voltage stress of secondary rectifier diodes and extending the range of zero voltage switching (ZVS) operation. However, since additional leakage inductance carries the ac current similar to the primary one, the core and copper loss oriented from additional leakage inductance can be high enough to decrease the whole efficiency of DC/DC converter. Therefore, in this paper, a new ZVS phase shift full bridge converter with separated primary winding (SPW) is proposed. Proposed converter makes the transformer and additional leakage inductor with one ferrite core. Using this method, leakage inductance is controlled by the winding ratio of separated primary winding. Moreover, by manufacturing the both magnetic components with one core, size and core loss can be reduced and it turns out the improvement of efficiency and power density of DC/DC converter. The operational principle of proposed converter is analyzed and verified by the 1.2kW prototype.

  • PDF