• Title/Summary/Keyword: zero-inflated model

Search Result 66, Processing Time 0.021 seconds

Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model (이변량 영과잉-포아송모형에서 변화시점에 관한 추론)

  • Kim, Kyung-Moon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.319-327
    • /
    • 1999
  • Zero-Inflated Poisson distributions have been widely used for defect-free products in manufacturing processes. It is very interesting to check the shift after the unknown changepoint. If the detectives are caused by the two different types of factor, we should use bivariate zero-inflated model. In this paper, likelihood ratio tests were used to detect the shift of changes after the changepoint. Some inferences for the parameters in this model were made.

  • PDF

A Zero-Inated Model for Insurance Data (제로팽창 모형을 이용한 보험데이터 분석)

  • Choi, Jong-Hoo;Ko, In-Mi;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2011
  • When the observations can take only the non-negative integer values, it is called the count data such as the numbers of car accidents, earthquakes, or insurance coverage. In general, the Poisson regression model has been used to model these count data; however, this model has a weakness in that it is restricted by the equality of the mean and the variance. On the other hand, the count data often tend to be too dispersed to allow the use of the Poisson model in practice because the variance of data is significantly larger than its mean due to heterogeneity within groups. When overdispersion is not taken into account, it is expected that the resulting parameter estimates or standard errors will be inefficient. Since coverage is the main issue for insurance, some accidents may not be covered by insurance, and the number covered by insurance may be zero. This paper considers the zero-inflated model for the count data including many zeros. The performance of this model has been investigated by using of real data with overdispersion and many zeros. The results indicate that the Zero-Inflated Negative Binomial Regression Model performs the best for model evaluation.

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

Developing the Accident Models of Cheongju Arterial Link Sections Using ZAM Model (ZAM 모형을 이용한 청주시 간선가로 구간의 사고모형 개발)

  • Park, Byung-Ho;Kim, Jun-Yong
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • This study deals with the traffic accident of the Cheongju arterial link sections. The purpose of the study is to develop the traffic accident model. In pursuing the above, this study gives particular attentions to developing the ZAM(zero-altered model) model using the accident data of arterial roads devided by 322 small link sections. The main results analyzed by ZIP(zero inflated Poisson model) and ZINB(zero inflated negative binomial model) which are the methods of ZAM, are as follows. First, the evaluation of various developed models by the Vuong statistic and t statistic for overdispersion parameter ${\alpha}$ shows that ZINB is analyzed to be optimal among Poisson, NB, ZIP(zero-inflated Poisson) and ZINB regression models. Second, ZINB is evaluated to be statistically significant in view of t, ${\rho}$ and ${\rho}^2$ (0.63) values compared to other models. Finally, the accident factors of ZINB models are developed to be the traffic volume(ADT), number of entry/exit and length of median. The traffic volume(ADT) and the number of entry/exit are evaluated to be the '+' factors and the length of median to be '-' factor of the accident.

Analysis of Food Poisoning via Zero Inflation Models

  • Jung, Hwan-Sik;Kim, Byung-Jip;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.859-864
    • /
    • 2012
  • Poisson regression and negative binomial regression are usually used to analyze counting data; however, these models are unsuitable for fit zero-inflated data that contain unexpected zero-valued observations. In this paper, we review the zero-inflated regression in which Bernoulli process and the counting process are hierarchically mixed. It is known that zero-inflated regression can efficiently model the over-dispersion problem. Vuong statistic is employed to compare performances of the zero-inflated models with other standard models.

Bayesian analysis of Korean income data using zero-inflated Tobit model (영과잉 토빗모형을 이용한 한국 소득분포 자료의 베이지안 분석)

  • Hwang, Jisu;Kim, Sei-Wan;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.917-929
    • /
    • 2017
  • Korean income data obtained from Korea Labor Panel Survey shows excessive zeros, which may not be properly explained by the Tobit model. In this paper, we analyze the data using a zero-inflated Tobit model to incorporate excessive zeros. A zero-inflated Tobit model consists of two stages. In the first stage, individuals with 0 income are divided into two groups: genuine zero group and random zero group. Individuals in the genuine zero group did not participate labor market since they have no intention to do so. Individuals in the random zero group participated labor market but their incomes are very low and truncated at 0. In the second stage, the Tobit model is assumed to a subset of data combining random zeros and positive observations. Regression models are employed in both stages to obtain the effect of explanatory variables on the participation of labor market and the income amount. Markov chain Monte Carlo methods are applied for the Bayesian analysis of the data. The proposed zero-inflated Tobit model outperforms the Tobit model in model fit and prediction of zero frequency. The analysis results show strong evidence that the probability of participating in the labor market increases with age, decreases with education, and women tend to have stronger intentions on participating in the labor market than men. There also exists moderate evidence that the probability of participating in the labor market decreases with socio-economic status and reserved wage. However, the amount of monthly wage increases with age and education, and it is larger for married than unmarried and for men than women.

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.

A simple zero inflated bivariate negative binomial regression model with different dispersion parameters

  • Kim, Dongseok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.895-900
    • /
    • 2013
  • In this research, we propose a simple bivariate zero inflated negative binomial regression model with different dispersion for bivariate count data with excess zeros. An application to the demand for health services shows that the proposed model is better than existing models in terms of log-likelihood and AIC.

Zero-Inflated Poisson Model with a Change-point (변화시점이 있는 영과잉-포아송모형)

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In case of Zero-Inflated Poisson model with a change-point, likelihood ratio test statistic was used for testing hypothesis for a change-point. A change-point and several interesting parameters were estimated by using the method of moments and maximum likelihood. In order to compare the estimators, empirical mean-square-error was used. Real data for the Zero-Inflated Poisson model with a change-point and Poisson model without a change-point were examined.

  • PDF

A joint modeling of longitudinal zero-inflated count data and time to event data (경시적 영과잉 가산자료와 생존자료의 결합모형)

  • Kim, Donguk;Chun, Jihun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1459-1473
    • /
    • 2016
  • Both longitudinal data and survival data are collected simultaneously in longitudinal data which are observed throughout the passage of time. In this case, the effect of the independent variable becomes biased (provided that sole use of longitudinal data analysis does not consider the relation between both data used) if the missing that occurred in the longitudinal data is non-ignorable because it is caused by a correlation with the survival data. A joint model of longitudinal data and survival data was studied as a solution for such problem in order to obtain an unbiased result by considering the survival model for the cause of missing. In this paper, a joint model of the longitudinal zero-inflated count data and survival data is studied by replacing the longitudinal part with zero-inflated count data. A hurdle model and proportional hazards model were used for each longitudinal zero inflated count data and survival data; in addition, both sub-models were linked based on the assumption that the random effect of sub-models follow the multivariate normal distribution. We used the EM algorithm for the maximum likelihood estimator of parameters and estimated standard errors of parameters were calculated using the profile likelihood method. In simulation, we observed a better performance of the joint model in bias and coverage probability compared to the separate model.