• 제목/요약/키워드: zero-inflated model

검색결과 66건 처리시간 0.02초

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

THE DEVELOPMENT OF A ZERO-INFLATED RASCH MODEL

  • Kim, Sungyeun;Lee, Guemin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권1호
    • /
    • pp.59-70
    • /
    • 2013
  • The purpose of this study was to develop a zero-inflated Rasch (ZI-Rasch) model, a combination of the Rasch model and the ZIP model. The ZI-Rasch model was considered in this study as an appropriate alternative to the Rasch model for zero-inflated data. To investigate the relative appropriateness of the ZI-Rasch model, several analyses were conducted using PROC NLMIXED procedures in SAS under various simulation conditions. Sets of criteria for model evaluations (-2LL, AIC, AICC, and BIC) and parameter estimations (RMSE, and $r$) from the ZI-Rasch model were compared with those from the Rasch model. In the data-model fit indices, regardless of the simulation conditions, the ZI-Rasch model produced better fit statistics than did the Rasch model, even when the response data were generated from the Rasch model. In terms of item parameter ${\lambda}$ estimations, the ZI-Rasch model produced estimates similar to those of the Rasch model.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용 (A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data)

  • 서기태;황범석
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.311-325
    • /
    • 2022
  • 0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.

영과잉을 고려한 중심상업지구 교통사고모형 개발에 관한 연구 (Safety Performance Functions for Central Business Districts Using a Zero-Inflated Model)

  • 이상혁;우용한
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.83-92
    • /
    • 2016
  • PURPOSES : The purpose of this study was to develop safety performance functions (SPFs) that use zero-inflated negative binomial regression models for urban intersections in central business districts (CBDs), and to compare the statistical significance of developed models against that of regular negative binomial regression models. METHODS : To develop and analyze the SPFs of intersections in CBDs, data acquisition was conducted for dependent and independent variables in areas of study. We analyzed the SPFs using zero-inflated negative binomial regression model as well as regular negative binomial regression model. We then compared the results by analyzing the statistical significance of the models. RESULTS : SPFs were estimated for all accidents and injury accidents at intersections in CBDs in terms of variables such as AADT, Number of Lanes at Major Roads, Median Barriers, Right Turn with an Exclusive Turn Lane, Turning Guideline, and Front Signal. We also estimated the log-likelihood at convergence and the likelihood ratio of SPFs for comparing the zero-inflated model with the regular model. In he SPFs, estimated log-likelihood at convergence and the likelihood ratio of the zero-inflated model were at -836.736, 0.193 and -836.415, 0.195. Also estimated the log-likelihood at convergence and likelihood ratio of the regular model were at -843.547, 0.187 and -842.631, 0.189, respectively. These figures demonstrate that zero-inflated negative binomial regression models can better explain traffic accidents at intersections in CBDs. CONCLUSIONS : SPFs that use a zero-inflated negative binomial regression model demonstrate better statistical significance compared with those that use a regular negative binomial regression model.

영과잉 공간자료의 분석 (Zero In ated Poisson Model for Spatial Data)

  • 한준희;김창훈
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.231-239
    • /
    • 2015
  • 가산자료(counts data)를 적합 하는 경우 보통 포아송 모형이 가장 먼저 고려된다. 과산포 문제가 있을 경우도 유사 포아송(quasi Poisson) 모형이나 음이항(Negative binomial) 모형으로 대부분 설명이 가능하다. 하지만, 가산자료 중에는 포아송분포를 가정한 기대 빈도 이상으로 많은 0이 관측되는 자료가 있고 이를 영과잉(Zero inflated) 가산 자료라고 부른다. 영과잉 가산자료를 설명하기 위해 영과잉 포아송(ZIP) 모형이나 영과잉 음이항(ZINB) 모형을 이용할 수 있다. 더 나아가 영과잉 가산자료가 공간상관관계까지 있을 경우 영과잉 문제뿐만 아니라 유의할 수 있는 공간효과까지 고려해야하고 이를 위해 혼합효과모형(mixed effects model)이 고려 될 수 있다. 본 연구에서 사용된 2004년 기준 부산시 남성동별 갑상선암 발생자수 자료를 이용하여, 일반선형 포아송모형, 영과잉 포아송모형, 공간 영과잉 포아송모형을 적합하여 비교해보았다.

정부 품질보증활동 데이터 활용을 위한 Zero-Inflated 포아송 분포 적용 (Application of Zero-Inflated Poisson Distribution to Utilize Government Quality Assurance Activity Data)

  • 김지훈;이창우
    • 품질경영학회지
    • /
    • 제46권3호
    • /
    • pp.509-522
    • /
    • 2018
  • Purpose: The purpose of this study was to propose more accurate mathematical model which can represent result of government quality assurance activity, especially corrective action and flaw. Methods: The collected data during government quality assurance activity was represented through histogram. To find out which distributions (Poisson distribution, Zero-Inflated Poisson distribution) could represent the histogram better, this study applied Pearson's correlation coefficient. Results: The result of this study is as follows; Histogram of corrective action during past 3 years and Zero-Inflated Poisson distribution had strong relationship that their correlation coefficients was over 0.94. Flaw data could not re-parameterize to Zero-Inflated Poisson distribution because its frequency of flaw occurrence was too small. However, histogram of flaw data during past 3 years and Poisson distribution showed strong relationship that their correlation coefficients was 0.99. Conclusion: Zero-Inflated Poisson distribution represented better than Poisson distribution to demonstrate corrective action histogram. However, in the case of flaw data histogram, Poisson distribution was more accurate than Zero-Inflated Poisson distribution.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.