• Title/Summary/Keyword: zero-inflated Poisson model

Search Result 43, Processing Time 0.017 seconds

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Application of Zero-Inflated Poisson Distribution to Utilize Government Quality Assurance Activity Data (정부 품질보증활동 데이터 활용을 위한 Zero-Inflated 포아송 분포 적용)

  • Kim, JH;Lee, CW
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.509-522
    • /
    • 2018
  • Purpose: The purpose of this study was to propose more accurate mathematical model which can represent result of government quality assurance activity, especially corrective action and flaw. Methods: The collected data during government quality assurance activity was represented through histogram. To find out which distributions (Poisson distribution, Zero-Inflated Poisson distribution) could represent the histogram better, this study applied Pearson's correlation coefficient. Results: The result of this study is as follows; Histogram of corrective action during past 3 years and Zero-Inflated Poisson distribution had strong relationship that their correlation coefficients was over 0.94. Flaw data could not re-parameterize to Zero-Inflated Poisson distribution because its frequency of flaw occurrence was too small. However, histogram of flaw data during past 3 years and Poisson distribution showed strong relationship that their correlation coefficients was 0.99. Conclusion: Zero-Inflated Poisson distribution represented better than Poisson distribution to demonstrate corrective action histogram. However, in the case of flaw data histogram, Poisson distribution was more accurate than Zero-Inflated Poisson distribution.

Zero In ated Poisson Model for Spatial Data (영과잉 공간자료의 분석)

  • Han, Junhee;Kim, Changhoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.231-239
    • /
    • 2015
  • A Poisson model is the first choice for counts data. Quasi Poisson or negative binomial models are usually used in cases of over (or under) dispersed data. However, these models might be unsuitable if the data consist of excessive number of zeros (zero inflated data). For zero inflated counts data, Zero Inflated Poisson (ZIP) or Zero Inflated Negative Binomial (ZINB) models are recommended to address the issue. In this paper, we further considered a situation where zero inflated data are spatially correlated. A mixed effect model with random effects that account for spatial autocorrelation is used to fit the data.

Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model (이변량 영과잉-포아송모형에서 변화시점에 관한 추론)

  • Kim, Kyung-Moon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.319-327
    • /
    • 1999
  • Zero-Inflated Poisson distributions have been widely used for defect-free products in manufacturing processes. It is very interesting to check the shift after the unknown changepoint. If the detectives are caused by the two different types of factor, we should use bivariate zero-inflated model. In this paper, likelihood ratio tests were used to detect the shift of changes after the changepoint. Some inferences for the parameters in this model were made.

  • PDF

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Zero-Inflated Poisson Model with a Change-point (변화시점이 있는 영과잉-포아송모형)

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In case of Zero-Inflated Poisson model with a change-point, likelihood ratio test statistic was used for testing hypothesis for a change-point. A change-point and several interesting parameters were estimated by using the method of moments and maximum likelihood. In order to compare the estimators, empirical mean-square-error was used. Real data for the Zero-Inflated Poisson model with a change-point and Poisson model without a change-point were examined.

  • PDF

Developing the Accident Models of Cheongju Arterial Link Sections Using ZAM Model (ZAM 모형을 이용한 청주시 간선가로 구간의 사고모형 개발)

  • Park, Byung-Ho;Kim, Jun-Yong
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • This study deals with the traffic accident of the Cheongju arterial link sections. The purpose of the study is to develop the traffic accident model. In pursuing the above, this study gives particular attentions to developing the ZAM(zero-altered model) model using the accident data of arterial roads devided by 322 small link sections. The main results analyzed by ZIP(zero inflated Poisson model) and ZINB(zero inflated negative binomial model) which are the methods of ZAM, are as follows. First, the evaluation of various developed models by the Vuong statistic and t statistic for overdispersion parameter ${\alpha}$ shows that ZINB is analyzed to be optimal among Poisson, NB, ZIP(zero-inflated Poisson) and ZINB regression models. Second, ZINB is evaluated to be statistically significant in view of t, ${\rho}$ and ${\rho}^2$ (0.63) values compared to other models. Finally, the accident factors of ZINB models are developed to be the traffic volume(ADT), number of entry/exit and length of median. The traffic volume(ADT) and the number of entry/exit are evaluated to be the '+' factors and the length of median to be '-' factor of the accident.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.