• Title/Summary/Keyword: zero-error

Search Result 760, Processing Time 0.02 seconds

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Problems of Stator Flux Estimation in DTC of PMSM Drives

  • Kadjoudj, M.;Golea, N.;Benbouzid, M.E.H
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.468-477
    • /
    • 2007
  • The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

Space-Time Quantization and Motion-Aligned Reconstruction for Block-Based Compressive Video Sensing

  • Li, Ran;Liu, Hongbing;He, Wei;Ma, Xingpo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.321-340
    • /
    • 2016
  • The Compressive Video Sensing (CVS) is a useful technology for wireless systems requiring simple encoders but handling more complex decoders, and its rate-distortion performance is highly affected by the quantization of measurements and reconstruction of video frame, which motivates us to presents the Space-Time Quantization (ST-Q) and Motion-Aligned Reconstruction (MA-R) in this paper to both improve the performance of CVS system. The ST-Q removes the space-time redundancy in the measurement vector to reduce the amount of bits required to encode the video frame, and it also guarantees a low quantization error due to the fact that the high frequency of small values close to zero in the predictive residuals limits the intensity of quantizing noise. The MA-R constructs the Multi-Hypothesis (MH) matrix by selecting the temporal neighbors along the motion trajectory of current to-be-reconstructed block to improve the accuracy of prediction, and besides it reduces the computational complexity of motion estimation by the extraction of static area and 3-D Recursive Search (3DRS). Extensive experiments validate that the significant improvements is achieved by ST-Q in the rate-distortion as compared with the existing quantization methods, and the MA-R improves both the objective and the subjective quality of the reconstructed video frame. Combined with ST-Q and MA-R, the CVS system obtains a significant rate-distortion performance gain when compared with the existing CS-based video codecs.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

THE BEAM POINTING OF COMMUNICATIN SATELLITE IN GEOSYNCHRONOUS INCLINED ORBIT (궤도경사각을 가진 통신위성의 빔 포인팅에 대한 연구)

  • 김방엽;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • We assume that the KOREASAT fails the entry of the geostationary orbit due to the error at the apogee kick motor firing. A simulation is done for the satellite that has a geosynochronous orbit with a non-zero degree inclination angle due to the failure at the apogee kick motor firing caused by the unbalance of the fuel storage and the spin of the thrust vector, etc. We analyzed the evolution of the orbit using the perturbation theory and calculated the changes of the eccentricity and the inclination. WHen a communication satellite has the figure eight trajectory, the beam point also traces the satellite. In this paper, We develope an algorithm to attack the above problem by stabilizing the beam point using the adjustment of the roll angle of the satellite. The spin action on the polarization plane that occurs when a satellite passes the ascending node and descending node affects the efficiency of the communication a lot, so we did another simulation for the better yaw angle adjustment for the KOREASAT to reduce the spin actino on the polarization plane.

  • PDF

Linear decentralized learning control for the robot moving on the horizontal plane

  • Lee, Soo-Cheol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.869-879
    • /
    • 1995
  • The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of learning control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. In the previous paper, I had studied the use of such controllers in a decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short. In this paper, we present two examples. The first illustrates the effect of coupling between subsystems in the system dynamics, and the second studies the application of decentralized learning control to robot problems. The latter example illustrates the application of decentralized learning control to nonlinear systems, and also studies the effect of the coupling between subsystems introduced in the input matrix by the discretization of the system equations. The conclusion is that for sufficiently small learning gain, and sufficiently small sample time, the simple learning control law based on integral control applied to each robot axis will produce zero tracking error in spite o the dynamic coupling in the robot equations. Of course, the results of this paper have much more general application than just to the robotics tracking problem. Convergence in decentralized systems is seen to depend only on the input and output matrices, provided the sample time is suffiently small.

  • PDF

Additional Diversity Gain in OFDM Systems under the Influence of IQ Imbalances (IQ 불균형에 의하여 왜곡된 OFDM 시스템에서의 다이버시티 이득 획득 기법)

  • Jin, Young-Hwan;Kwon, Ji-Hyeon;Lee, Yu-Ro;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1205-1213
    • /
    • 2006
  • In this paper, we analyze the IQ(In-phase/Quadrature) imbalance effects at both transmitter and receiver side of OFDM(Orthogonal Frequency Division Multiplexing) and show that IQ imbalance is the parameter to improve the performance using ML and OSIC scheme. Especially, we can archive the diversity gain due to the IQ imbalance in multipath fading environment. In addition, new preamble format is proposed, which enable estimation of the channel and IQ imbalance parameters to maximize the diversity gain. Significant performance improvement is achieved by using the ML(Maximum Likelihood)and OSIC(Ordered Successive Interference Cancellation) with compensation compared to a standard receiver with no compensation for IQ imbalance and proposed channel estimation scheme achieves the better performance improvement than conventional.

Performance Analysis of Asynchronous 2.5 Gbps / 622Mbps Optical Subscriber Network with Manchester coded Downstream and NRZ upstream re-modulation (맨체스터 부호로 코딩된 하향신호의 재변조를 이용한 비동기 2.5 Gbps / 622 Mbps 광가입자 망의 성능 분석)

  • Park, Sang-Jo;Kim, Bong-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.143-147
    • /
    • 2009
  • We propose an asymmetrical 2.5 Gbps / 622 Mbps bidirectional optical subscriber network with Manchester coded downstream and NRZ (Non-Return-to-Zero) upstream remodulation. The proposed system has important characteristics in the optical network unit (ONU): it does not require a light source or the usual control circuits such as wavelength control and output power control, and it is possible to use a synchronization scheme between upstream and downstream data. We theoretically analyze BER(Bit Error Rate) performance of upstream data remodulated with Manchester coded downstream according to the types of NRZ downstream data and perform simulations with MATLAB. The BER performance and the receiver sensitivity have been improved by 3 dB by adjusting threshold levels compared to the conventional receiver. The results have shown the remodulation scheme with Manchester coded downstream could be a useful technology for asynchronous and asymmetric optical subscriber networks with low cost and simple structures.