• Title/Summary/Keyword: zero-current-switching(ZCS)

Search Result 173, Processing Time 0.024 seconds

A Novel Quasi-Resonant ZCS-PFM DC-DC Switching Regulator with Loosely-Coupled Flyback Inductors

  • Chu E.H.;Chandhaket S.;Moisseev S.;Hiraki E.;Nakaoka M.;Kifune H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.266-270
    • /
    • 2001
  • This paper presents a novel topological prototype of voltage source series quasi-resonant zero current soft-switching pulse frequency modulated dc-dc power converter circuit using IGBTs which incorporates a high-frequency flyback transformer link. Its steady-state operating principle is described on the basis of simulation analysis, along with the open loop controlled power regulation characteristics of the multi-functional coupled inductors linked dc-dc power converter operating under a principle of zero current soft switching commutation.

  • PDF

Soft Switching High Frequency Inverter for New Induction Heating (새로운 유도가열용 소프트 스위칭 고주파 인버터)

  • Kim, C.Y.;Mun, S.P.;Kim, M.Y.;Kim, H.J.;Lyu, J.Y.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.119-124
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

A Study on New DCM-ZVS DC-DC Converter (새로운 DCM-ZVS DC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Shim, Jae-Sun
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • This paper is study on a new high efficiency DC-DC converter of discontinuous conduction mode (DCM) with zero voltage switching (ZVS). The converters of high efficiency are generally made that the power loss of the used semiconductor switching devices is minimized. The proposed converter is accomplished that the turn-on operation of switches is on zero current switching (ZCS) by DCM. The converter is also applicable to a new quasi-resonant circuit to achieve high efficiency converter. The control switches using in the converter are operated with soft switching, that is, ZVS and ZCS by quasi-resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the converter is high. The soft switching operation and the system efficiency of the proposed DCM-ZVS converter are verified by digital simulation and experimental results.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Family of Isolated Zero Current Transition PWM Converters

  • Adib, Ehsan;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • In this paper a family of zero current transition PWM converters which employs a simple auxiliary circuit is introduced. This soft switched auxiliary circuit is only composed of a switch and a capacitor. The proposed converters are analyzed and various operating modes of the ZCT flyback converter are discussed. Design considerations are presented and the experimental results of the ZCT flyback converter laboratory prototype are illustrated. The experimental results confirm the validity of theoretical analysis.

A New partial resonant buck-boost AC-DC converter for high power factor (부분공진형 고역률 승강압 AC-DC 컨버터)

  • Shin, Hyun-Sik;Suh, Ki-Young;Kwon, Soon-Kurl;Kwak, Dong-Kurl;Lee, Hyun-Woo;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.512-515
    • /
    • 1994
  • This paper propose the high power factor and efficiency buck-boost AC-DC converter because the input current is made sinusoidal wave in single phase alternating current source. The proposed converter is able to minimize switching loss by the partial resonant switching which is for switching devices to operate the zero voltage switching (ZVS) or zero current switching(ZCS) without increasing their voltage and current stresses.

  • PDF

Series Resonant ZCS- PFM DC-DC Converter using High Frequency Transformer Parasitic Inductive Components and Lossless Inductive Snubber for High Power Microwave Generator

  • Kwon, Soon-Kurl;Saha, Bishwajit;Mun, Sang-Pil;Nishimura, Kazunori;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • Conventional series-resonant pulse frequency modulation controlled DC-DC high power converters with a high-frequency transformer link which is designed for driving the high power microwave generator has the problem of hard switching commutation at turn-on and turn-off of active power switching devices. This problem is due to the influence of the magnetizing current of the high-frequency transformer. This paper presents a novel prototype for a high-frequency transformer using parasitic parameters with a lossless inductive snubber and a series resonant capacitor assisted series-resonant zero current switching pulse frequency modulated DC-DC power converter, which is designed using a high power magnetron for microwave ovens. In order to implement a complete and efficient soft switching commutation, the performance of the new converter topology is practically confirmed and evaluated in the prototype of a power microwave generator.

A Study on Novel Step Up-Down Converter using Loss-Less Snubber Capacitor (로스레스 스너버 커패시터를 이용한 새로운 스텝 업-다운 컨버터에 관한 연구)

  • Kwak, D.K.;Lee, B.S.;Kim, C.S.;Shim, J.S.;Jung, W.S.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.15-16
    • /
    • 2012
  • This paper is study on a novel high efficiency step up-down converter using loss-less snubber capacitor. The proposed converter is accomplished that the turn-on operation of switches is on zero current switching (ZCS) by DCM. The converter is also applicable to a new quasi-resonant circuit to achieve high efficiency converter. The control switches using in the converter are operated with soft switching, that is, ZVS and ZCS by quasi-resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the converter is high.

  • PDF

A Family of Magnetic Coupling DC-DC Converters With Zero-Voltage-Switching Over Wide Input Voltage Range and Load Variation

  • Chen, Guipeng;Dong, Jie;Deng, Yan;Tao, Yong;He, Xiangning;Wang, Yousheng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1639-1649
    • /
    • 2016
  • This paper presents a family of soft-switching DC-DC converters with a simple auxiliary circuit consisting of a coupled winding and a pair of auxiliary switch and diode. The auxiliary circuit is activated in a short interval and thus the circulating conduction losses are small. With the auxiliary circuit, zero-voltage-switching (ZVS) and zero-current-switching are achieved for the main and auxiliary switches respectively, over wide input voltage range and load variation. In addition, the reverse-recovery problem of diodes is significantly alleviated because of the leakage inductor. Furthermore, the coupled inductor simultaneously serves as the main and auxiliary inductors, contributing to reduced magnetic component in comparison with the conventional zero-voltage-transition (ZVT) converters. Experimental results based on a 500 W prototype buck circuit validate the advantages and effectiveness of the proposed magnetic coupling ZVS converter.

Analysis, Design and Implementation of an Improved ZVZCS-PWM Forward converter

  • Soltanzadeh, Karim;Dehghani, Majid;Khalilian, Hosein
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2014
  • In this paper an Improved Zero Voltage Zero Current Pulse Width Modulation Forward converter which employs a simple resonance snubber circuit is introduced. A simple snubber circuit consists of a capacitor, an inductor and two diodes. In proposed converter, switch Q1 operates at ZCS turn-on, and ZVS turn-off conditions and all-passive semiconductor devices operate at ZVZCS turn-on and turn-off state. The proposed converter is analyzed and various operating modes of the ZVZCS-PWM forward converter are discussed. Analysis and design considerations are presented and the prototype experimental results of a 100w (40 V/2.5A) proposed converter operating at 30 KHz switching frequency confirm the validity of theoretical analysis.