• Title/Summary/Keyword: zero-current-switching(ZCS)

Search Result 173, Processing Time 0.021 seconds

A New Zero-Current Switched High Power Factor Rectifier for Power Conversion System for Telecommunication (통신용 전력변환장치를 위한 새로운 영전류 스위칭 방식의 고 역률 정류기)

  • Moon, Gun-Woo;Jung, Young-Seok;Kim, Marn-Go;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.132-134
    • /
    • 1993
  • A new Zero-Current Switched(ZCS) High Power Factor Rectifier for the. power factor correction is proposed. The proposed single phase rectifier enables a zero-current switching operation of all the power devices allowing the circuit to operate at high switching frequencies and high power levels. A dynamic model and a predictive current control technique for the ZCS-High Power Factor Rectifier(HPFR) are proposed. With the proposed dynamic model, an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor.

  • PDF

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Full Bridge DC-DC Converter with Transformer Isolation for Arc Welding (아크 용접에 적합하며 1차 측 보조회로를 사용하는 영전압-영전류 직류-직류 컨버터)

  • Jeon, Seong-Jeub;Cho Gyu-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.683-692
    • /
    • 2000
  • A new primary-side-assisted zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation is proposed. The auxiliary circuit adopted to assist ZCS for the leading leg is composed of only one small transformer and two diodes. It has a simple and robust structure, and load current control capability even in short circuit conditions. Possibility of magnetic saturation due to asymmetricity of circuits or transient phenomena is greatly reduced, which is a very attractive feature in DC/DC converters with transformer isolation. The power rating of the auxiliary transformer is about 10% of that of the main transformer. Operation of a 12.5KW prototype designed for welding application was verified by experiments.

  • PDF

PDM ZCS Resonant High Frequency Inverter for Induction Heated Roller

  • Kang, Shin-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presents a lossless inductor snubber-assisted series resonant high frequency inverter using the trench gate IGBTs for the electromagnetic induction eddy current-heated fixing roller in copy and printing machines in a new generation. This soft switching high-frequency inverter can completely achieve zero current soft switching (ZCS) commutation mode transitions and wide power regulation under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally presented for a constant frequency PDM strategy under a ZCS operation, together with its output power regulation characteristics-based on the pulse density modulation. The effectiveness of this soft switching high-frequency inverter is confirmed for the fixing equipment with the induction-heated fixing roller.

High-Frequency Zero Current Soft Switching Inverter with Pulse Density Modulation for Induction Heated Roller

  • Kang, Shin-Chul;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.49-57
    • /
    • 2008
  • This paper presents a voltage source type half-bridge series resonant high frequency (HF) inverter for induction heated fixing roller in copy machines. This high-frequency inverter works under zero current soft switching (ZCS) commutation and has wide power regulation range due to employing a pulse density modulation (PDM) scheme. Transient and steady state operating modes of the inverter are presented in this paper together with its PDM-based power regulation system. Experimental operating performances of the developed HF-ZCS inverter as well as power losses and actual efficiency are discussed and compared with computer simulation results.

New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • Ryu, Seung-Hui;Lee, Dong-Yun;Yu, Sang-Bong;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF

Zero-voltage-switching three level auxiliary resonant commutated pole inverter (영전압 스위칭 3-레벨 보조 공진 폴 인버터)

  • 유동욱;원충연;조정구;백주원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.535-542
    • /
    • 1996
  • A zero voltage switching (ZVS) three level auxiliary resonant commutated pole inverter (ARCPI) is presented for high power GTO inverters. The concept of ARCP for two level inverter is extended to the three inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching (ZCS) which enables use of the low cost thyristors. The proposed ARCPI can handle higher voltage and higher power (1-10MVA) comparing to the two level one. Operation and analysis of the ARCPI are illustrated and the features are compared o those of the snubber circuit incorporated three level inverter. Experimental results with 10kW, 4kHz prototype are presented to verify the principle of operation. (author). refs., figs., tab.

  • PDF

A New High Efficiency and Low Profile On-Board DC/DC Converter for Digital Car Audio Amplifiers

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.83-93
    • /
    • 2006
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifiers is proposed. The proposed converter shows low conduction loss due to the low voltage stress of the secondary diodes, a lack of DC magnetizing current for the transformer, and a lack of stored energy in the transformer. Moreover, since the primary MOSFETs are turned-on under zero-voltage-switching (ZVS) conditions and the secondary diodes are turned-off under zero-current-switching (ZCS) conditions, the proposed converter has minimized switching losses. In addition, the input filter can be minimized due to a continuous input current, and an output inductor is absent in the proposed converter. Therefore, the proposed converter has the desired features, high efficiency and low profile, for a viable power supply for digital car audio amplifiers. A 60W industrial sample of the proposed converter has been implemented for digital car audio amplifiers with a measured efficiency of $88.3\%$ at nominal input voltage.

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim, C.E.;Park, E.S.;G.W. Moon
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.215-223
    • /
    • 2003
  • In this paper, a new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in the main switch and the main diode, respectively. The auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition. The resonant current required to obtain the ZCT condition is relatively small and regenerated to the input voltage source. The operational principles of a boost converter integrated with the proposed ZCT circuit cell are analyzed and verified by the simulation and experimental results.

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

Analysis of a Novel Soft Switching Bidirectional DC-DC Converter

  • Eom, Ju-Kyoung;Kim, Jun-Gu;Kim, Jae-Hyung;Oh, Soon-Tack;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.859-868
    • /
    • 2012
  • In this paper, a novel bidirectional DC-DC converter employing soft switching technique was proposed. Compare to conventional bidirectional converters, the main switches of proposed converter are operated without switching losses. Moreover, auxiliary switches are used, and the switches are operated under zero voltage switching (ZVS) and zero current switching (ZCS) condition. To verify the validity of the proposed converter, mode analysis, design procedure, simulation and experimental results are presented.