• Title/Summary/Keyword: zero-current-switching(ZCS)

Search Result 173, Processing Time 0.023 seconds

Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving (전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

A Novel ZVS 3-Level Resonant Pole Inverter (새로운 ZVS 3-레벨 공진폴 인버터)

  • Baek, Ju-W.;Cho, Jung-G.;Yoo, Dong-W.;Song, Doo-I.;Won, Cung-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.360-364
    • /
    • 1995
  • A zero voltage switching (ZVS) three level resonant pole inverter is presented for high power GTO inverters. The concept of auxiliary resonant commutated pole(ARCP) for two level inverter is extended to the three level inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching(ZCS) which enables use of the low cost thyristors. The proposed circuit can handle higher voltage and higher power(1-10MVA) comparing to the two level one. Operation and analysis of the proposed circuit are illustrated. Experimental results with 10 KW, 4 kHz prototype are presented to verify the principle of operation.

  • PDF

A Current Sensor-less Bridgeless CCM Single-Stage PFC Converter with Semi-Active Rectifier (Semi-Active Rectifier를 적용한 센서리스 단일단 브리지리스 PFC 컨버터)

  • Naradhipa, Adhistira M.;Kang, Suhan;Hai, Tran;Sagpazar, Nur Banu;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.59-61
    • /
    • 2018
  • 본 논문에서는 입력전류를 센싱 받지 않아도 역률 보상을 하는 새로운 단일단 브리지리스 AC-DC컨버터를 제안한다. 제안하는 컨버터의 스위치는 전구간에서 ZVS(Zero Voltage Switching) 턴 온을 성취하며, 다이오드는 전구간에서 ZCS(Zero Current Switching) 턴 오프를 성취한다. 제안하는 컨버터의 넓은 범위의 출력전압 제어와 간단한 전력 제어를 위해 SDAB(Semi-Dual Active Bridge)기반의 모듈레이션 기법을 적용하였다. 1kW급 50kHz의 스위칭 주파수를 갖는 시작품을 통해 본 논문의 타당성을 검증하였다.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.

High Efficiency Resonant Flyback Converter using a Single-Chip Microcontroller (싱글칩 마이크로컨트롤러를 이용한 고효율 공진형 플라이백 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.803-813
    • /
    • 2020
  • This paper presents a high efficiency resonant flyback converter using a single-chip microcontroller. The proposed converter primary performs the resonant switching by applying the asymmetrical pulse-width modulation (APWM) to the half-bridge power topology. And the converter secondary uses the diode flyback rectifier as its power topology and operates with the zero current switching (ZCS). Thus the proposed converter achieves high efficiency. The total structure of proposed converter is very simple because it uses a single-chip microcontroller and bootstrap circuit for its control and drive, respectively. First, this paper describes the converter operation according to each operation mode and shows its steady-state analysis. And the software control algorithm and drive circuits operating the proposed converter are explained. Then, the operation characteristics of proposed converter are shown through the experimental results of an implemented prototype based on each explanation.

CS-PDM Series Resonant High Frequency Inverter for Copy Machine

  • Sugimura, Hisayuki;Eid, Ahmad Mohamad;Hiraki, Eiji;Kim, Sung-Jung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1066-1071
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

Development of High Efficiency Boost DC/DC Converter For EV

  • Song, Sung-Geon;Lee, Sang-Hun;Song, Hyun-Jig;Park, Seong-Mi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.415-421
    • /
    • 2014
  • In this paper, reactorless high efficiency boost DC/DC converter for EV is proposed. In proposed converter, improves efficiency because decrease power loss when the switches are turned on/off using zero current switching (ZCS) at all switch of primary full bridge. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer, it reduces system size and expense because of not add special reactor. For validity verification of proposed converter, in the paper implements simulation using PSIM and perform experiment by making 5KW DC/DC converter. In experimental results, efficiency of proposed converter conformed superiority.

Development of high repetition rate and high power pulsed Nd:YAG laser power supply using ZCS resonant converter (ZCS공진형 컨버터를 적용한 고반복 대출력 펄스형 Nd:YAG 레이저 전원장치 개발)

  • Joe, K.Y.;Kim, E.S.;Byun, Y.B.;Kim, H.J.;Park, J.M.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.514-517
    • /
    • 1996
  • Zero current switching(ZCS) series resonant converter is used to control laser power density in a pulsed Nd:YAG laser power supply. The high power and high repetition rate paused Nd:YAG laser is designed and fabricated to control current pulse width and pulse repetition rate in the double elliptical laser oscillator. In order to find out operational characteristics of pulsed Nd:YAG laser, the electrical properties of driving power supply and laser output power are investigated and experimented by changing of the current pulse width from 200uS to 350uS(step 50uS) and pulse repetition rate range of 500pps(pulse per second) to 1150pps. From that result, we obtaind maximum efficiency of 1.83% and maximum laser output or 220W at the condition of 350 uS and 1150pps with one Nd:YAG rod), and obtained that of more than 400W with two laser head connecting series.

  • PDF