• Title/Summary/Keyword: zero valent iron installation

Search Result 2, Processing Time 0.016 seconds

Optimal Remediation of TCE-contaminated Groundwater using Direct Current and Fe$^0$ (직류전원과 0가 철을 이용한 지하수내 TCE정화효율의 최적화 연구)

  • Moon, Ji-Won;Moon, Hi-Soo;Roh, Yul;Kim, Heon-Ki;Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.229-239
    • /
    • 2002
  • The objective of this study was to design an optimal electro-remediation system for TCE contaminated water using zero talent iron (ZVI) and direct current (DC). A series of column experiments were conducted to evaluate the effects of electrode arrangement and the location of permeable iron barrier in the column on the TCE removal efficiency and iron corrosion process. In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive degradation of TCE was improved with simultaneous application of both ZVI and DC compared to that used ZVI only. The moot effective arrangement of electrode and ZVI for TCE removal from water was a column set with ZVI and cathode installed at the down gradient, respectively.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.