• Title/Summary/Keyword: zero stiffness element

Search Result 56, Processing Time 0.022 seconds

Post-buckling and Elasto-plastic Analysis of Shell Structures using the Degenerated Shell Element (변형된 쉘요소를 이용한 판 및 쉘 구조의 후좌굴 및 탄.소성 유한요소해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.17-27
    • /
    • 1995
  • For the post-buckling and elasto-plastic analysis of shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors in the iteration process and evaluating the total Green-Lagrange stain corresponding U total displacements. In the calculation of the stiffness matrix, the element formulation takes into account the effect of finite rotation increments by retaining second order rotation terms in the incremental displacement field. The selective or reduced integration scheme using the heterosis element is applied in order to overcome both shear locking phenomena and the zero energy mode. The load/displacement incremental scheme is adopted for geometric non-linear F .E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references's results.

  • PDF

A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations (다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발)

  • Yoon, J.H.;Huh, H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.

A Method for Evaluation of Hollow Existence in Sublayers of Concrete Pavement Considering Pavement Stiffness (포장강성을 고려한 콘크리트 포장하부 공동유무 평가방법)

  • Sohn, Dueck Su;Lee, Jae Hoon;Jeong, Ho Seong;Park, Joo Young;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • PURPOSES: The existing method evaluating the existence of the hollows in concrete pavement does not consider the stiffness of pavement. In addition, the method uses unreasonable logic judging the hollow existence by the deflection caused by zero loading. In this study, the deflection of slab corner due to heavy weight deflectometer (HWD) was measured in concrete pavement sections where underground structures are located causing the hollows around them. METHODS: The modulus of subgrade reaction obtained by comparing the actual deflection of slab to the result of finite element analysis was calibrated into the composite modulus of subgrade reaction. The radius of relative stiffness was calculated, and the relationship between the ratio of HWD load to the radius of relative stiffness and the slab deflection was expressed as the curve of secondary degree. RESULTS: The trends of the model coefficients showing width and maximum value of the curve of secondary degree were analyzed by categorizing the pavement sections into three groups : hollows exist, additional investigation is necessary, and hollows do not exist. CONCLUSIONS: The results analyzed by the method developed in this study was compared to the results analyzed by existing method. The model developed in this study will be verified by analyzing the data obtained in other sections with different pavement structure and materials.

Development of 4-node Plate Bending Element using Nonconforming Displacement Modes (비적합 변위모드를 이용한 4절점 평판휨요소의 개발)

  • 박용명;최창근
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.179-188
    • /
    • 1997
  • A 4-node element for efficient finite element analysis of plate bending is presented in this paper. This element is formulated based on Mindlin plate theory to take account of shear deformation. To overcome the overestimation of shear stiffness in thin Mindlin plate element, especially in the lower order element, five nonconforming displacement modes are added to the original displacement fields. The proposed nonconforming element does not possess spurious zero-energy mode and does not show shear locking phenomena in very thin plate even for distorted mesh shapes. It was recognized from benchmark numerical tests that the displacement converges to the analytical solutions rapidly and the stress distributions are very smooth. The element also provides good results for the case of high aspect ratio.

  • PDF

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

Curling Behavior of Long-Span Concrete Pavement Slab under Environmental Loads (환경하중에 의한 장스팬 콘크리트 포장 슬래브의 컬링 거동 특성 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom;Yun, Dong-Ju
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.151-161
    • /
    • 2009
  • This study was conducted to investigate the characteristics of the curling behavior of long-span pavement slabs under environmental loads. By developing and using finite element models of the long-span pavement slabs, the stress distribution and the effects of slab length, slab thickness, stiffness of underlying layers, and the restraints of the slab ends on the curling behavior were analyzed. In addition, the field experiments were performed with the actual long-span pavement slab to obtain the curling behavior of the real structure under environmental loads. As a result of this study, it was found that the vertical displacements of the long-span pavement slab along the centerline due to the curling behavior were zero except for the areas near the slab ends, and the curling stresses were maximum and constant where the displacements were zero. The slab length and the stiffness of underlying layers did not affect the maximum curling stresses. The restraints at the slab ends made the curling stresses occur near the slab ends, but did not much affect the maximum curling stresses.

  • PDF

Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique

  • Rajasekaran, Sundaramoorthy;Wilson, Antony John
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.269-294
    • /
    • 2013
  • This paper is concerned with the determination of exact buckling loads and vibration frequencies of variable thickness isotropic plates using well known finite difference technique. The plates are subjected to uni, biaxial compression and shear loadings and various combinations of boundary conditions are considered. The buckling load is found out as the in plane load that makes the determinant of the stiffness matrix equal to zero and the natural frequencies are found out by carrying out eigenvalue analysis of stiffness and mass matrices. New and exact results are given for many cases and the results are in close agreement with the published results. In this paper, like finite element method, finite difference method is applied in a very simple manner and the application of boundary conditions is also automatic.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.