• Title/Summary/Keyword: zero motion vector

Search Result 19, Processing Time 0.031 seconds

Fast adaptive block matching algorithm for motion vector estimation (움직임 벡터 추정을 위한 고속 적응 블럭 정합 알고리즘)

  • 신용달;이승진;김경규;정원식;김영춘;이봉락;장종국;이건일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.77-83
    • /
    • 1997
  • We present a fast adaptive block matching algorithm using variable search area and subsampling to estimate motion vector more exactly. In the presented method, the block is classified into one of three motion categories: zero motion vector block, medium-motion bolck or high-motion block according to mean absolute difference of the block. By the simulation, the computation amount of the presented methoe comparable to three step search algorithm and new three step search algorithm. In the fast image sequence, the PSNR of our algorithm increased more than TSS and NTSS, because our algorithm estimated motion vector more accurately.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

Video Error Concealment using Neighboring Motion Vectors (주변의 움직임 벡터를 사용한 비디오 에러 은닉 기법)

  • 임유두;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.257-263
    • /
    • 2003
  • Error control and concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and the internet. This paper describes a temporal error concealment by postprocessing. Lost image blocks are overlapped block motion compensated (OBMC) using median of motion vectors from adjacent blocks at the decoder. The results show a significant improvement over zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Side Match Criterion OBMC by 1.4 to 3.5㏈ gain in PSNR. We present experimental results showing improvements in PSNR and computational complexity.

Channel Condition Adaptive Error Concealment using Scalability Coding (채널상태에 적응적인 계층 부호화를 이용한 오류 은닉 방법 연구)

  • Han Seung-Gyun;Park Seung-Ho;Suh Doug-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper: we propose the adaptive error concealment technique for scalable video coding over wireless network error prove environment. We prove it is very effective that Error concealment techniques proposed in this paper are applied to scalable video data. In this paper, we propose two methods of error concealment. First one is that the en·or is concealed using the motion vector of base layer and previous VOP data. Second one is that according to existence of motion vector in error position, the error is concealed using the same position data of base layer when the motion vector is existing otherwise using the same position data of previous VOP when the motion vector is 0(zero) adaptively. We show that according to various error pattern caused by condition of wireless network and characteristics of sequence, we refer decoder to base layer data or previous enhancement layer data to effective error concealment. Using scalable coding of MPEG-4 In this paper, this error concealment techniques are available to be used every codec based on DCT.

Transform-domain Wyner-Ziv Residual Coding using Temporal Correlation (시간적 상관도를 활용한 변환 영역 잔차 신호 Wyner-Ziv 부호화)

  • Cho, Hyon-Myong;Eun, Hyun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.140-151
    • /
    • 2012
  • In Wyner-Ziv coding, key picture is encoded by conventional H.264/AVC intra coding which has low complexity. Although inter coding is more efficient than intra coding, its complexity is much higher than intra coding due to its motion estimation. Since the main feature of Wyner-Ziv coding is low complexity of encoder, inter coding is not suitable to encode key picture in Wyner-Ziv coding. However, inter picture coding with zero motion vector can be usable for Wyner-Ziv key picture coding instead of intra coding. Moreover, while current transform-domain Wyner-Ziv residual coding only utilizes temporal correlation of WZ picture, if zero motion coding is jointly used to encode key picture in transform-domain Wyner-Ziv residual coding, there will be a significant improvement in R-D performance. Experimental results show that the complexity of Wyner-Ziv coding with the proposed zero motion key picture coding is higher than conventional Wyner-Ziv coding with intra key picture coding by about 9%, however, there are BDBR gains up to 54%. Additionally, if the proposed zero motion key coding is implemented on top of the transform-domain Wyner-Ziv residual coding, the result shows rate gains up to 70% in BDBR compared to conventional Wyner-Ziv coding with intra key picture coding.

An Efficient Error Concealment Algorithm using Adaptive Selection of Adjacent Motion Vectors (주변 움직임 벡터의 적응적 선택을 이용한 효율적인 에러은닉 알고리즘)

  • Lee Hyun-Woo;Seong Dong-Su
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.661-666
    • /
    • 2004
  • In the wireless communication systems, transmission errors degrade the reconstructed image quality severely. Error concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and internet. Among various techniques which can reduce the degradation of video quality, the error concealment techniques yield good performance without overheads and the modification of the encoder. In this paper, lost image blocks can be concealed with the OBMC(Overlapped Block Motion Compensation) after new motion vectors of the lost image blocks are allocated by median values using the adaptive selection with motion vectors of adjacent blocks. We know our algorithm is more effective in case of continuous GOB loss. The results show a significant improvement over the zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Median+OBMC by 3dB gain in PSNR.

Use of Support Vector Machines in Biped Humanoid Robot for Stable Walking (안정적인 보행을 위한 이족 휴머노이드 로봇에서의 서포트 벡터 머신 이용)

  • Kim Dong-Won;Park Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.315-319
    • /
    • 2006
  • Support vector machines in biped humanoid robot are presented in this paper. The trajectory of the ZMP in biped walking robot poses an important criterion for the balance of the walking robots but complex dynamics involved make robot control difficult. We are establishing empirical relationships based on the dynamic stability of motion using SVMs. SVMs and kernel method have become very popular method for learning from examples. We applied SVM to model the practical humanoid robot. Three kinds of kernels are employed also and each result has been compared. As a result, SVM based on kernel method have been found to work well. Especially SVM with RBF kernel function provides the best results. The simulation results show that the generated ZMP from the SVM can be improve the stability of the biped walking robot and it can be effectively used to model and control practical biped walking robot.

Sensorless Indirect Vector Control of Induction Motor using Sliding Mode Observer (슬라이딩 모드 관측기에 의한 유도전동기 센서리스 벡터제어)

  • Shin, Jong-Ryeol;Kwon, Soon-Man;Lee, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.340-342
    • /
    • 2005
  • This paper describes the speed-sensorless vector control system of a three-phase induction motor using sliding mode flux/speed observer. The sliding mode observer estimates the rotor speed. The error between the actual and observed currents converges to zero which guarantees the accuracy of the flux observer. The convergence of nonlinear time-varying observer along with the asymptotic stability of the controller was analyzed. To define the control action which maintains the motion on the sliding manifold, an "equivalent control" concept was used. It was simulated and implemented on a sensorless indirect vector drive for 750[W] three-phase induction motor. The simulation and experimental results demonstrated the effectiveness of the proposed estimation method.

  • PDF

Intelligent Walking of Humanoid Robot for Stable Walking on a Decent (휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구)

  • Kim, Dong-Won;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF

Numerical Analysis on Melting and Solidification of Pure Metals with Enthalpy-Porosity Model

  • Kim, Sin;Chung, Bun-Jin;Kim, Min-Chan
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-105
    • /
    • 2002
  • A finite volume numerical approach is developed and used to simulate convection-dominated melting and solidification problems. The present approach is based on the enthalpy-porosity method that is traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity profiles in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computational cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely suppresses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative analysis with the previous numerical approaches is performed to demonstrate the improved features of the presented model. Results of a melting and solidification experiments are also used to assess and evaluate the performance of the model.