• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.02 seconds

Environmental Change of Suspended Sediment Discharge by Human Action (인간활동으로 인한 부유토양유출의 환경변화)

  • 박종관
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 1993
  • The problem of supply and transport of sediment from a mountainous catchment is very important in explaining dynamic geomorphology and the hydrological cycle. The discharge of suspended sediment is determined by a morphological system. Human interference to environment Is also an important, not negligible factor in sediment production. Moreover, growing concern in recent years for the problems of nonpoint pollution and for the transport of contaminants through terrestrial and aquatic ecosystems has highlighted the role of sediment-associated transport in fluvial systems. This study was conducted in forested and quarried catchments in order to clarify the different discharge process and the mechanism of suspended sediment dynamics for each catchment. As a forested catchment, the Yamaguchi River catchment which drains a $3.12km^2$ area was chosen. On the other hand, the Futagami River basin which is formed by three subbasins (1.07, 1.59 and $1.78km^2$), as a quarried catchment was selected. These catchments are situated to the north and east of Mt. Tsukuba, Ibaraki, Japan. The discharge pattern of suspended sediment from the Futagami River basin is more unstable and irregular than that from forested catchment, the Yamaguchi River catchment. Under the similar rainstorm conditions, suspended sediment concentration from quarried catchment during a rainstorm event increases from 43 to 27,340 mg/l. However, in the case of the forested catchment it changes only from nearly zero to 274 mg/l. Generally, the supply source of suspended sediment is classified into two areas, the in-channel and non-channel source areas. As a result of field measurements, in the case of the forested catchment the in-channel (channel bed, channel bank and channel margin) is the main source area of suspended sediment. On the other hand, remarkable sediment source area on the Quarried catchment is the non-channel that is unvegetated ground.

  • PDF

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Evaluation of Stability of Small Modular Reactor (SMR) Power Ship in Waves (소형 모듈 원자력(SMR) 발전 선박의 파랑 중 안정성 평가)

  • Kyoungwan Lee;Sundon Choi;Byungyoung Moon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.499-505
    • /
    • 2024
  • To address the issue of global warming, various regulations and policies for reducing greenhouse gas emissions are being implemented. In this context, the number of countries targeting carbon neutrality, the latter of which entails reducing net carbon emissions to zero, is increasing, and small modular reactors (SMRs) are investigated extensively as a new model for power plants. SMRs, although measuring only 5%-10% of the size of conventional large nuclear power plants, are highly efficient systems that can generate hundreds of megawatts of power. Compared with fossil fuel-based power plants, SMRs generate less carbon emissions and can complement the unstable energy supply from renewable sources. However, the use of SMRs is opposed by local residents owing to the risk of significant radioactive-material leakage when a nuclear-power-plant accident occurs. Hence, floating, small nuclear-power vessels are being investigated and installed in the ocean, thus simplifying the process of securing land, compensating nearby residents, and increasing safety against natural disasters. In this study, the towing stability of SMR power ships is analyzed, and the result shows no significant risk of towing to the destination in sea states 3, 4, and 5.

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Nutrients and Chlorophyll Dynamics Along the Longitudinal Gradients of Daechung Reservoir (대청호에서 종적구배에 따른 영양염류 및 엽록소의 역동성)

  • Bae, Dae-Yeul;Yang, Eun-Chan;Jung, Seung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.285-293
    • /
    • 2007
  • The study was to determine zonal characteristics of nutrients and chlorophyll and evaluate their trophic relations in Daechung Reservoir. For this study, we compared longterm water quality data among three zones along with trophic state using 1993 to 2002 dataset, obtained from the Ministry of Environment, Korea. Total phosphorous (TP), Secchi depth (SD) and chlorophyll (CHL) showed typical longitudinal declines from the riverine to lacustrine zone, but total nitrogen (TN) was not evident. Largest seasonal variations in TP and CHL occurred during the summer monsoon from July to August. In the reservoir, ambient TN averaged 1.67 mg $L^{-1}$ and ratios of TN : TP averaged 88.04, indicating that nitrogen is not likely limited but phosphorus limitation was evident. Trophic State Index (TSI), based on CHL, TP, and SD, varied depending on the zones and seasons. Mean TSI (TP) in the riverine zone was 62 during the monsoon, indicating a hypertrophic condition, whereas the mean was 40 in the lacustrine, indicating a nearly oligotrophic. Values of TSI (CHL) showed maximum in the transition zone during the monsoon. The deviation analysis of TSI showed that about 65% of TSI (CHL)-TSI (TP) and TSI (CHL)-TSI (SD) values were less than zero and the lowest values were -42, indicating an effect of inorganic turbidity on algal growth in the reservoir. Correlation analysis of CHL vs. SD shewed greater correlation coefficient (p<0.001, r=-0.47) in the transition than other two zones (p<0.001, $r{\leq}-0.40$). Correlation analysis of TP vs. CHL was greatest in the lacustrine and TP was minimum in the lacustrine zone, indicating a lowest yield of algal biomass in the lacustrine. Overall data suggests that zonal response of chlorophyll yield at a given nutrient unit is clearly differed among the longitudinal gradients, so the management strategy such as cross sectional modelling should be provided in each zone.

A Multi-agent System to Assess Land-use and Cover Changes Caused by Forest Management Policy Scenarios (다행위자시스템을 이용한 산림정책별 토지이용 변화와 영향 분석)

  • Park, Soojin;An, Yoo Soon;Shin, Yujin;Lee, Sooyoun;Sim, Woojin;Moon, Jiyoon;Jeong, Gwan Young;Kim, Ilkwon;Shin, Hyesop;Huh, Dongsuk;Sung, Joo Han;Park, Chan Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.3
    • /
    • pp.255-276
    • /
    • 2015
  • This paper presents a multi-agent system model of land-use and cover changes, which is developed and applied to the Gariwang-san and its vicinity, located in Pyeongchang and Jeongseon-gun, Gangwon province, Korea. The Land Use Dynamics Simulator (LUDAS) framework of this study is well suited for representing the spatial heterogeneity and dynamic interactions between human and natural environment, and capturing the impacts of forest-opening policy interventions to future socio-economic and natural environment changes. The model consists of four components: (1) a system of human population, (2) a system of landscape environment, (3) decision-making procedures integrating human(or household), environmental and policy information into forest land-use decisions, and (4) a set of policy scenarios that are related to the forest-opening. The results of model simulation by different combination of various forest management scenarios are assessed by the levels of household income, ecosystem service value and income inequality in the study region. As a result, the optimal scenario of forest-opening policies in the study region is to open the forest to local residential community for the purpose of recreation, considering the distinctive topographical feature. The model developed in this research is expected to contribute to a decision support system for sustainable forest management and various land-use policies in Korea.

  • PDF

Temporal Dynamics of Water Quality in Junam Reservoir, as a Nest of Migratory Birds (철새도래지인 주남저수지의 계절적 수질변동)

  • Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The objectives of this study were to evaluate seasonal and interannual variations of water quality and nutrient input (N, P) in Junam Reservoir, a nesting waterbody of migratory birds, over 10 years during 1998$\sim$2007 along with dynamic relations of trophic parameters using empirical models. Concentrations of COD averaged 7.8 mg $L^{-1}$ during the study, while TN and TP were $1.4\;mg\;L^{-1}$ and $83{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypereutrophic state. Values of monthly COD had strong positive relations (r=0.669, p<0.001) with conductivity, indicating that summer rainfall resulted in an ionic dilution of the reservoir water by rainwater and contributed better water quality. One-way ANOVA tests showed significant differences (F=$5.2{\sim}12.9$, p<0.05) in TN and TP between the before and after the bird migration. In other words, nutrient levels were greater in the absence of migratory birds than in the presence of the migratory birds, suggesting a no-effect on nutrient inputs by the birds. Also, one-way ANOVA indicated no significant differences (F=$0.37{\sim}0.48$, p>0.05) in $NO_{3^-}N$ and $NH_{3^-}N$ between the before and after the birds migration. Linear empirical models using trophic parameters showed that algal biomass as CHL, had significant low correlations with TN ($R^2$=0.143, p<0.001, n=119) and TP ($R^2$=0.192, p<0.001, n=119). These results suggest that influences of nutrients on the CHL were evident, but the effect was weak. This fact was supported by analysis of Trophic State Index Deviation (TSID). Over 70% in the observed values of "TSI (CHL)-TSI (SD)" and "TSI (CHL)-TSI (TP)" were less than zero, suggesting a light limitation on the CHL by inorganic suspended solids.