• Title/Summary/Keyword: zero curve

Search Result 214, Processing Time 0.026 seconds

Bioequivalence of Mepiril Tablet to Amaryl Tablet (Glimepiride 2 mg) by Liquid Chromatography/Electrospray Tandem Mass Spectrometry

  • Lee, Heon-Woo;Cho, Sung-Hee;Park, Wan-Su;Im, Ho-Taek;Rew, Jae-Hwan;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2005
  • The purpose of the present study was to evaluate the bioequivalence of two glimepiride tablets, Amaryl tablet (Handok & Aventis Korea, reference drug) and Mepiril tablet (Myungmoon Pharm. Co., Ltd., Korea, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). After adding an internal standard (glibenclamide) to human plasma, plasma samples were extracted using 1mL of methyl tertiary butyl ether. Compounds extracted were analyzed by reverse-phase HPLC with multiple reaction monitoring (MRM) mode analyte detection. This method for determination glimepiride proved accurate and reproducible, with a limit of quantitation of 2 ng/mL in human plasma. Twenty-four healthy male Korean volunteers received each medicine at the glimepiride dose of 2 mg in a $2{\times}2$ crossover study. There was a one-week washout period between the doses. Plasma concentrations of glimepiride were monitored by a LC-MS/MS for over a period of 12 hr after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 12 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Amaryl/Mepiril were log 0.9583-log 1.1357 and log 1.0570-log 1.2376, respectively. These values were within the acceptable bioequivalence intervals of log 0.80-log 1.25. Taken together, our study demonstrated the bioequivalence of Amaryl and Mepiril with respect to the rate and extent of absorption.

Malignancy Risk Scoring of Hydatidiform Moles

  • Pradjatmo, Heru;Dasuki, Djaswadi;Dwianingsih, Ery Kus;Triningsih, Ediati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2441-2445
    • /
    • 2015
  • Background: Several risk factors leading to malignant transformation of hydatidiform moles have been described previously. Many studies showed that prophylactic chemotherapy for high risk hydatidiform moles could significantly decrease the incidence of malignancy. Thus, it is essential to discover a breakthrough to determine patients with high risk malignancy so that prophylactic chemotherapy can be started as soon as possible. Objectives: Development of a scoring system of risk factors as a predictor of hydatidiform mole malignant transformation. Materials and Methods: This research is a case control study with hydatidiform mole and choriocarcinoma patients as subjects. Multiple logistic regression was used to analyze the data. Odds ratios (OR), attributable at risk (AR : OR-1) and risk index ($ARx{\beta}$) were calculated for develoipment of a scoring system of malignancy risk. The optimal cut-off point was determined using receiver operating characteristic (ROC) curve. Results: This study analyzed 34 choriocarcinoma cases and 68 benign hydatidiform mole cases. Four factors significantly increased the risk of malignancy, namely age ${\geq}35$ years old (OR:4.41, 95%CI:1.07-16.09, risk index 5); gestational age ${\geq}$ 12weeks (OR:11.7, 95%CI:1.8-72.4, risk index 26); uterine size greater than the gestational age (OR:10.2, 95%CI:2.8-36.6, risk index 21); and histopathological grade II-III (OR:3.4, 95%CI:1.1-10.6, risk index 3). The lowest and the highest scores for the risk factors were zero and 55, respectively. The best cut-off point to decide high risk malignancy patients was ${\geq}31$. Conclusions: Malignant transformation of hydatidiform moles can be predicted using the risk scoring by analyzing the above four parameters. Score ${\geq}31$ implies high risk patients so that prophylactic chemotherapy can be promptly administered for prevention.

Improvement of Starting Performance in Supersonic Exhaust Diffuser with Second Throat for High Altitude Simulation (2차목에 의한 고고도 모사용 초음속 디퓨져 시동성능 향상)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-327
    • /
    • 2008
  • Performance characteristics of the axi-symmetric supersonic exhaust diffuser (SED) with a second throat are numerically investigated. Computational strategy repeats those for a straight exhaust diffuser with zero-secondary flows. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. The methodology is validated with accuracy. To predict the improvement of starting performance by second throat diffuser, diffuser characteristic curve due to the SED equipped with the second throat is speculated with respect to that of a straight area type as a function of nozzle stagnation pressure. Principal physics caused by the of the second throst is also addressed in terms of a second throat area ratio.

  • PDF

Flexible, Extensible, and Efficient VANET Authentication

  • Studer, Ahren;Bai, Fan;Bellur, Bhargav;Perrig, Adrian
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.574-588
    • /
    • 2009
  • Although much research has been conducted in the area of authentication in wireless networks, vehicular ad-hoc networks (VANETs) pose unique challenges, such as real-time constraints, processing limitations, memory constraints, frequently changing senders, requirements for interoperability with existing standards, extensibility and flexibility for future requirements, etc. No currently proposed technique addresses all of the requirements for message and entity authentication in VANETs. After analyzing the requirements for viable VANET message authentication, we propose a modified version of TESLA, TESLA++, which provides the same computationally efficient broadcast authentication as TESLA with reduced memory requirements. To address the range of needs within VANETs we propose a new hybrid authentication mechanism, VANET authentication using signatures and TESLA++ (VAST), that combines the advantages of ECDSA signatures and TESLA++. Elliptic curve digital signature algorithm (ECDSA) signatures provide fast authentication and non-repudiation, but are computationally expensive. TESLA++ prevents memory and computation-based denial of service attacks. We analyze the security of our mechanism and simulate VAST in realistic highway conditions under varying network and vehicular traffic scenarios. Simulation results show that VAST outperforms either signatures or TESLA on its own. Even under heavy loads VAST is able to authenticate 100% of the received messages within 107ms. VANETs use certificates to achieve entity authentication (i.e., validate senders). To reduce certificate bandwidth usage, we use Hu et al.'s strategy of broadcasting certificates at fixed intervals, independent of the arrival of new entities. We propose a new certificate verification strategy that prevents denial of service attacks while requiring zero additional sender overhead. Our analysis shows that these solutions introduce a small delay, but still allow drivers in a worst case scenario over 3 seconds to respond to a dangerous situation.

Verification of Periodical Calibration for Iso-center Positions using Quality Assurance System for Irradiation Equipment Position Established at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.192-194
    • /
    • 2002
  • We present the results on the calibration of iso-center positions using the quality assurance system established at PMRC for determination of center position in X-ray and proton irradiation fields. Details on the system are presented in another presentation in this session. The equipment in the system is mounted on a patient treatment bed in each proton exposure room, G1 or G2. A center of a stainless ball on the equipment is set at a cross of laser markers located around the iso-center and fixed on the room and on the snout in the gantry. A proton beam or an X-ray beam is exposed onto the ball through a brass collimator of 100 mm ${\times}$ 100 mm and projected onto the imaging plate set at I cm behind the ball. On the axis perpendicular to the thrust axis of the gantry on the imaging plate, a distance between a center of the collimator image and a center of the ball image varies as a cosine function of gantry angles unless the ball is set on the iso-center. An amplitude of the cosine curve shows the distance between the ball and the iso-center, an offset the offset of the collimator, and a phase shift at a zero crossing point the ball direction viewed from the iso-center. We present the relation among the iso-center position, the laser maker position, and the center of proton and X-ray irradiation fields. Its stability and its reproducibility are discussed.

  • PDF

Aerodynamic Performance for Horizontal Axis Wind Turbine Model using Subsonic Wind Tunnel (풍동실험을 통한 수평축 풍력터빈 모델의 공력성능 연구)

  • Ryu, Ki-Wahn;Yoon, Seong-Jun;Lee, Chang-Su;Choy, Seong-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.964-972
    • /
    • 2007
  • Wind turbine experiment was carried out for the horizontal axis wind turbine with the aerodynamically optimized blade. From the comparison of aerodynamic performance between upwind and downwind type wind turbine rotor, the measured torque fluctuation of the latter is larger than that of the former. This phenomenon is owing to the interaction of wake generated from support column and blades. The wind turbine model satisfies the design condition in that the measured result of the power coefficient at zero pitch angle shows maximum peak at the designed tip speed ratio, λ = 6. It also shows that the decrease in aerodynamic power due to negative pitch change is more sensitive than that of the same positive pitch change.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Carotenoid Destruction and Nonenzymatic Browning during Red Pepper Drying as functions of Average Moisture Content and Temperature (고추 건조과정에 있어서 평균 수분함량 및 온도에 따른 Carotenoid파괴 및 비효소적 갈변)

  • Lee, Dong-Sun;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.425-429
    • /
    • 1989
  • Functional relationships of carotenoid destruction and nonenzymatic browning during red pepper drying were established by the dynamic test using the moisture-temperature-quality history curve in actual drying experiments. The dependence of the rate constants on temperature and moisture content was established and analysed assuming that carotenoid destruction and nonenzymatic browning are the first order and the zero order reaction, respectively. Carotenoid destruction rate constant was high at high moisture and high temperature, and had a minimum value at some intermediate moisture content. As dependence of rate constant on temperature, activation energy of carotenoid decolorization ranged from 7.7 to 27.4 kcal/mol, showing higher value at higher moisture content. Nonenzymatic browning showed higher rate at higher temperature and higher moisture content. Activation energy of browning was in the range of 7.5-20.2 kcal/mol with higher value at higher moisture level.

  • PDF

Molecular Diffusion of Water in Paper (IV) - Mathematical model and fiber-phase moisture diffusivities for unsteady-state moisture diffusion through paper substrates - (종이내 수분확산 (제4보) - 종이의 비정상상태 수분확산 모델과 섬유상 수분확산 계수 -)

  • 윤성훈;박종문;이병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • An unsteady-state moisture diffusion through cellulosic fibers in paper was characterized from the moisture sorption experiment and the mathematical modeling. The sorption experiment was conducted by exposing thin dry paper specimens to a constant temperature-humidity environment. Oven dried blotting papers and filter papers were used as test samples and the gains of their weights were constantly monitored and recorded as a function of sorption time. For a mathematical approach, the moisture transport was assumed to be an one-dimensional diffusion in thickness direction through the geometrically symmetric structure of paper. The model was asymptotically simplified with a short-term approximation. It gave us a new insight into the moisture uptake phenomena as a function of square root of sorption time. The fiber-phase moisture diffusivities(FPMD) of paper samples were then determined by correlating the experimental data with the unsteady-state diffusion model obtained. Their values were found to be on the order of magnitude of $10^{-6}-10^{-7}cm^2$/min., which were equivalent to the hypothetical effective diffusion coefficients at the limit of zero porosity. The moisture sorption curve predicted from the model fairly agreed with that obtained from the experiment at some limited initial stages of the moisture uptake process. The FPMD value of paper significantly varied depending upon the current moisture content of paper. The mean FPMD was about 0.7-0.8 times as large as the short-term approximated FPMD.

Methodologies to Improve Emotional Image Qualities by Optimizing Technological Image Quality Metrics (기술적인 화질 지표 조절양 최적화를 통한 감성 화질 향상 방안)

  • You, Jae-Hee
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Emotional image quality optimization methodologies are investigated using technological image quality controls based on the eye tests of various image samples. The images are evaluated based on various contrast, lightness and saturation image quality metric tone curves. The order of importance to image quality enhancements is contrast, saturation and brightness. The slopes of emotional image qualities with respect to technical image quality metric changes are found to be composed of mathematical function modelling with nearly zero, intermediate and maximum slope regions in general, which can reflect well known log and saturated as well as conventional reverse U shape natures. Image quality improvements are analyzed not only with just single but also with multiple image quality metrics. To ease the unified image quality metric analysis and control, a new function is presented to utilize both the newly found and conventional emotional image quality behaviors. It is found that the overall image quality enhancement can be realized only in a few limited cases of multiple image quality metric controls. It is also found that the kinds of image quality enhancement methodologies are not strongly dependent on image contents (genre).