• Title/Summary/Keyword: zeolite MFI

Search Result 28, Processing Time 0.027 seconds

Preparation of Oriented MFI Zeolite Membranes (배향된 MFI 제올라이트 박막의 제조)

  • Song, Kyeong-Keun;Ha, Kwang
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 2006
  • MFI zeolite membranes were prepared on anodic alumina (Anodisc) as support. First, silicalite-1(${\approx}1.2{\mu}m$) seed crystals were attached to the surface of the support via chemical bonding, and the a- and b-axis oriented zeolite membranes could be synthesized on the support coated with the monolayer of the seed crystals by secondary growth hydrothermal synthesis. The zeolite membranes prepared were characterized using scanning electron microscope and analyzed by X-ray diffraction.

Non-Covalent Immobilization of Chiral (Salen) Complexes on HF-treated Mesoporous MFI-type Zeolite for Asymmetric Catalysis

  • Lee, Kwang-Yeon;Lee, Choong-Young;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • MFI structural zeolite (ZSM-5 or Sililcalite) was treated with HF solution to introduce mesoporous channels in the microporous crystals. Inner mesopore size could be controlled from 2.5 to 3.5 nm by changing the concentration of HF solution. The pore structure of HF-treated MFI zeolite was studied by instrumental analysis. The active Co (III) salen complex monomers were successfully anchored non-covalently on the surfaces of mesoporous MFI-type zeolite. These heterogeneous catalysts could be applied in asymmetric ring opening of terminal epoxides by phenol derivatives. It showed very high enantioselectivity and yield up to 95% in the catalytic synthesis of optically active $\alpha$-aryloxy alcohol compounds.

Review on Zeolite MFI Membranes for Xylene Isomer Separation (제올라이트 MFI 자일렌 분리막 연구 동향)

  • Kim, Donghun
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.202-215
    • /
    • 2019
  • Molecular sieve membranes separate molecules based on their size and/or shape and have been of high interest, due to their potentially high energy efficiency and high selectivity. Zeolite MFI membrane is one of the most-studied molecular sieve membranes and has affected following studies on other molecular sieve membranes. This review discusses the technical developments on the control of morphology, microstructure, and defect of MFI membranes, which have significantly improved xylene isomer separation performances. These include crystal morphology control, effective secondary growth, seed coating method, crystal orientation control, heteroatom doping, and defect healing method.

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.

Preparation and Catalytic Properties of Vanadium-Containing MFI Type Zeolite (바나듐 함유 MFI형 제올라이트의 제조 및 촉매적 특성)

  • Kim, Geon Joong;Ko, Wan Suk;Cho, Byung Rin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.361-372
    • /
    • 1994
  • Vanadium containing MFI type zeolites have been prepared hydrothermally or by the impregnation method with $NH_4VO_3$ solution after dealumination of HZSM-5. Incorporation of vanadium into the framework of zeolite has been demonstrated by XRD, DTA, FT-IR and ESR analyses. Upon $NH_4VO_3$ impregnation and calcination of dealuminated zeolite, vanadium substitution into the framework could be performed like a hydrothermally synthesized zeolite. Vanadium in zeolite is able to pass redox cycles at high temperatures, and it is shown that vanadium is probably fixed and atomically dispersed in the structure of zeolite. The catalytic benzene hydroxylation, hexanes and alcohols oxidation were used for evaluating the properties of vanadium incorporated MFI zeolite.

  • PDF

Preparation of MFI Zeolite Catalyst Supported on Silicalite Foam and Its Catalytic Property in the Cracking of n-Octane (실리카라이트 폼에 담지된 MFI 제올라이트 촉매의 제조와 n-옥탄 분해반응에서 이들의 촉매 성질)

  • Jung, Je Sik;Choi, Dong Bae;Song, Kyeong Keun;Ha, Kwang;Song, Yo Soon;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.452-457
    • /
    • 2005
  • Foam-type MFI zeolite catalyst was prepared by dispersing fine ($-0.2{\mu}m$) particles of MFI zeolite on silicalite foam. Catalytic cracking of n-octane was investigated over the foam-type catalyst and Delplot method was employed to interpret product compositions for deducing reaction mechanism. The Si/Al molar ratio of dispersed MFI zeolite was estimated 25 and its dispersed amount of silicalite foam was 25 wt%. Since the apparent density of the foam type catalyst was very low $0.11g{\cdot}cm^{-3}$, the catalyst loading amount could be varied from 0.02 g to 0.5 g without concerning pressure drop, providing a wide variance in the residence time of the reactants and products. The conversion and olefin yield in the catalytic cracking of n-octane increased with the catalyst loading. The product composition was very simple and could be explained by applying the protolytic cracking mechanism when the catalyst loading was small. Higher loading of the catalyst brought about further reactions of cracked products, accumulating lower olefin and paraffin with low reactivity in product stream and resulting in complex product composition.

Dependence of Growth Temperature on MFI Zeolite Membrane Growth (성장온도의 변화에 따른 MFI Zeolite Membrane의 성장 특성 분석)

  • Kim, Duk-Eun;Ko, Chang-Hyun;Oh, Weon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.355-359
    • /
    • 2009
  • Si wafer, which was treated with TMSP-TBA (N-trimethoxysilylpropyl-n,n,n-tri-n-butylammonium bromide), was used foF a substrate to grow a MFI membrane. Growth of membranes was conducted in various conditions such as temperature and gravity, and their structures were in detail studied with field emission scanning electron microscope and x-ray diffractometer. The structures of membranes grown on substrates were strongly dependent on growing temperature and gravity.

Synthesis and characterization of microporous TS-1 zeolite(MFI) (Microporous TS-1 Zeolite(MFI)의 합성과 특성)

  • 강선명;이희수;김익진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • A microporous zeolite-type tianosilicate (TS-1), new catalysis elements, was synthesized by differents of the reactant solution pH. The range of reactant solution pH has from 10.0 to 12.4 TS-1 Zeolite (ETS-10), having a large pore (8~10 ${\AA}$), was synthesized at 10.4 of pH, since TS-1 Zeolite (ETS-4), having a small pore (3~5 ${\AA}$), was synthesized at 11.5 of pH. Also the two materials simultaneously existed at the intermediate pH. Crystallization, physico chemical characteristics of synthesized TS-1 Zeolite were investigated by XRD, XRF, SEM and FT-IR techniques.

  • PDF

Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation (MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향)

  • Song, Ki Won;Seo, Gon;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.521-529
    • /
    • 2011
  • Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of $C_3-C_9$ were mainly produced on MWW, while the yield of $C_2{^=}$ and aromatics were high on MFI. Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.

The Effect of Pore Structure of Zeolites on their Product Distribution and Deactivation in the Catalytic Cracking of n-Octane (n-옥탄의 촉매 분해반응에서 제올라이트의 세공구조가 생성물 분포와 활성저하에 미치는 영향)

  • Min, Byung Goo;Lee, Jae Youl;Song, Yo Soon;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.547-553
    • /
    • 2007
  • The catalytic cracking of n-octane over FER, MFI, MOR and BEA zeolites was studied by the protolytic cracking mechanism in order to understand the effect of pore structure of zeolites on their product composition and deactivation. The selectivities for $C_3$ and $C_3{^=}$ were high over the zeolites with medium pores due to additional cracking, while those for $C_4$ and $C_4{^=}$, the initial products, were high over the zeolites with large pores. MFI zeolite showed slow deactivation due to small carbon deposit, while FER zeolite with small pores deactivated rapidly with severe carbon deposit. The deactivation of BEA zeolite was slow even with a large amount of carbon deposit, but MOR zeolite showed a rapid deactivation even with a small amount of carbon deposit. The conversion measured along with the time on stream on these zeolite catalysts was simulated by a mechanism based on the simplified reaction path of n-octane cracking and the deactivation related to the pore blockage by carbon deposit.