• 제목/요약/키워드: zea mays L.

검색결과 270건 처리시간 0.048초

옥수수 자엽초에서 오옥신 유발 에틸렌 생성에 대한 Mannose의 억제작용 (Inhibitory Effect of Mannose on Auxin-Induced Ethylene Production in Corn (Zea mays L.) Coleoptiles)

  • 조성혜
    • Journal of Plant Biology
    • /
    • 제33권4호
    • /
    • pp.309-314
    • /
    • 1990
  • Effect of mannose on auxin-induced ethylene production in corn (Zea mays L.) coleoptiles was studied. Auxin induced ethylene production decreased in proportion to mannose concentrations. The inhibitory effect of mannose appeared after 2 h of incubation. Ethylene production was significantly depressed by mannose at high concentration (10-5M-10-4M) of indole acetic acid (IAA), but not at low concentrations (10-8M-10-6M). The inhibition of auxin-induced ethylene production by mannose was specific, since other sugars such as galactose, glucose, sucrose and mannitol did not have an inhibitory effect. In an effort to elucidate mechanisms of mannose the effect on the auxin induced ethylene production, effect of the sugar on ACC synthase activity and ACC induced ethylene production was studied. Mannose failed to inhibit ACC mediated ethylene production, but decreased both the ACC content and ACC synthase activity in the tissue. These results suggest that the inhibitory effect of mannose on auxin induced ethylene production results from suppression of auxin induction of ACC synthase.

  • PDF

Nondestructive Classification between Normal and Artificially Aged Corn (Zea mays L.) Seeds Using Near Infrared Spectroscopy

  • Min, Tai-Gi;Kang, Woo-Sik
    • 한국작물학회지
    • /
    • 제53권3호
    • /
    • pp.314-319
    • /
    • 2008
  • Near infrared (NIR) spectroscopy was used to classify normal and artificially aged nonviable corn (Zea mays L., cv. 'Suwon19') seeds. The spectra at 1100-2500nm were scanned with normal and artificially aged single seeds and analyzed by principle component analysis (PCA). To discriminate normal seeds from artificially aged seeds, a calibration modeling set was developed with a discriminant partial least square 2 (PLS 2) method. The calibration model derived from PLS 2 resulted in 100% classification accuracy of normal and artificially aged (aged) seeds from the raw, the 1st and 2nd derivative spectra. The prediction accuracy of the unknown normal seeds was 88, 100 and 97% from the raw, the $1^{st}$ and $2^{nd}$ derivative spectra, and that of the unknown aged seeds was 100% from all the raw, the $1^{st}$ and $2^{nd}$ derivative spectra, respectively. The results showed a possibility to separate corn seeds into viable and non-viable using NIR spectroscopy.