• Title/Summary/Keyword: zaprinast

Search Result 7, Processing Time 0.017 seconds

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.

The Antiallodynic Effects of Intrathecal Zaprinast in Rats with Chronic Constriction Injury of the Sciatic Nerve (좌골신경 만성협착손상 흰쥐에서 척수강 내로 투여된 Zaprinast의 항이질통 효과)

  • Lee, Jae Do;Jun, In Gu;Choi, Yun Sik;Im, So Hyun;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2009
  • Background: Zaprinast is an inhibitor of phosphodiesterase 5, 6 and 9. Phosphodiesterase inhibitors could produce anti-nociceptive effects by promoting the accumulation of cGMP. We hypothesized that intrathecal zaprinast could attenuate the allodynia induced by chronic constriction injury of the sciatic nerve in rat. Methods: Sprague-Dawley rats were prepared with four loose ligations of the left sciatic nerve just proximal to the trifurcation into the sural, peroneal and tibial nerve branches. Tactile allodynia was measured by applying von Frey filaments to the lesioned hindpaw. The thresholds for the withdrawal responses were assessed. Zaprinast ($3-100{\mu}g$) was administered intrathecally by the direct lumbar puncture method to obtain the dose-response curve and the 50% effective dose ($ED_{50}$). Measurements were taken before and 15, 30, 45, 60, 90, 120, and 180 min after the intrathecal doses of zaprinast. The side effects were also observed. Results: Intrathecal zaprinast resulted in a dose-dependent antiallodynic effect. The maximal effects occurred within 15-30 min and then they gradually decreased down to the baseline level over time in all the groups. There was a dose dependent increase in the magnitude and duration of the effect. The $ED_{50}$ value was $17.4{\mu}g$ (95% confidence intervals; $14.7-20.5{\mu}g$). No severe motor weakness or sedation was observed in any of the rats. Conclusions: Intrathecally administered zaprinast produced a dose-dependent antiallodynic effect in the chronic constriction injury neuropathic pain model. These findings suggest that spinal phosphodiesterase 5, 6 and 9 may play an important role in the modulation of neuropathic pain.

Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta (흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성)

  • Kang, Hyung-sub;Choi, Cheol-ho;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

Inhibitory effect of propofol on endothelium-dependent relaxation and blood pressure lowering in rats (흰쥐에서 혈관내피 의존적인 혈관이완과 혈압하강에 대한 propofol의 억제 효과)

  • Kim, Shang-Jin;Kim, Jeong-gon;Joe, Sung-gun;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.357-366
    • /
    • 2004
  • We studied the effect of propofol (PPF) on the endothelium-dependent vascular responses in isolated rat thoracic aorta. In aortic rings with endothelium, PPF inhibited the phenylephrine (PE)-induced contraction in a concentration-dependent manner. In PE-precontracted preparations, PPF attenuated the endothelium-dependent relaxation by acetylcholine but not by A23187. And PPF did not attenuate the endothelium-independent relaxation by sodium nitroprusside (SNP). The relaxation induced by acetylcholine in PE-precontracted aortic rings was significantly augmented by zaprinast, a cGMP-specific phosphodiesterase inhibitor, and this augmentation was inhibited by PPF. Although SNP-induced relaxation was significantly augmented by zaprinast, this augmentation was not inhibited by PPF. In preparations preconstricted with PE, the PPF-induced relaxation was inhibited by atropine. In addition, PPF attenuated the vasorelaxation by phosphodiesterase inhibitors (IBMX, Ro20-1724 or zaprinast except milrinone). In vivo, the infusion of acetylcholine and SNP showed decreased arterial blood pressure in rats. The pre-injection of PPF inhibited the acetylcholine-induced blood pressure lowering, but not the SNP-induced blood pressure lowering. These results suggest that PPF can attenuate in part the acetylcholine-induced vasorelaxation and blood pressure lowering through the inhibition of the acetylcholine receptor-mediated endothelium-derived relaxing factor by acting on endothelium. It is considered that the inhibitory effect of PPF on the vasorelaxation is due to the decreased level of cGMP which can be attributed to the inhibition of the muscarinic receptor and/or receptor-G-protein interaction.

Electrolysis of Physiological Salt Solution Generates a Factor that Relaxes Vascular Smooth Muscle

  • Song, Pil-Oh;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.217-223
    • /
    • 1998
  • Oxygen-derived free radicals have been implicated in many important functions in the biological system. Electrical field stimulation (EFS) causes arterial relaxation in animal models. We found that EFS applied to neither muscle nor nerve but to Krebs solution caused a relaxation of rat aorta that had been contracted with phenylephrine. In the present study, therefore, we investigated the characteristics of this EIRF (electrolysis-induced relaxing factor) using rat isolated aorta. Results indicated that EIRF acts irrespective of the presence of endothelium. EIRF shows positive Griess reaction and is diffusible and quite stable. EIRF-induced relaxation was stronger on PE-contracted aorta than on KCl-contracted one, and inhibited by the pretreatment with methylene blue. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, potentiated the EIRF-induced relaxation. $N^G-nitro-L-arginine$, NO synthase inhibitor, did not inhibit the EIRF-induced relaxation. Deferroxamine, but not ascorbic acid, DMSO potentiated the EIRF-induced relaxation. These results indicate that electrolysis of Krebs solution produces a factor that relaxes vascular smooth muscle via cGMP-mediated mechanism.

  • PDF

The Eeffect of Sodium Nitroprusside on Muscle Tension in Guinea-pig Ileum (기니 픽 장관 평활근에서 Sodium Nitroprusside가 장력에 미치는 영향)

  • Kwon, Seong-Chun;Kim, Si-Yeon;Kim, Eun-Ju;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.797-808
    • /
    • 1997
  • Nitric oxide (NO) has been 3mown as a mediator of nonadrenergic, noncholinergic inhibitory neurotransmitter in intestinal smooth muscles. It has been suggested that NO donor such as sodium nitroprusside (SNP) produces relaxation of smooth muscle via activation of guanylate cyclase and elevation of cGMP levels. We have therefore investigated the effects of NO, using SNP, on muscle tension in the longitudinal smooth muscle of guinea-pig ileum. The possible role of cGMP was also investigated as well as the involvement of $K^+$ channel on SNP-induced inhibitory effect. The results are summarized as follows; high KCI-or CCh-activated contractions were inhibited by SNP in a concentration-dependent manner. 8-Br-cGMP also showed a similar effect in that of SNP TEA (1 mM) significantly reduced the SNP-induced inhibitory effect. SNP-induced effect was forther reduced by the presence of 10 mM TEA. On the other hand, 4-AP (0.1 mM), glibenclamide $(10\;{\mu}M)$ and apinain $(0.1\;{\mu}M)$ showed little effects on SNP-induced relaxation. Zaprinast significantly potentiated the SNP-induced inhibitory effect in all ranges. ODQ also significantly decreased the SNP-induced inhibitory effect. Pretreatment with CPA $(10\;{\mu}M)$ slightly reduced the SNP-induced inhibitory effect. From the above results, both effect mediated by NO and cGMP might be responsible for the activation of $Ca^{2+}$-activated $K^+$ channel by SNP in guinea-rig ileum. And this $K^+$ channel activation by SNP also contributes to the SNP-induced membrane hyperpolarization and relaxation.

  • PDF

Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices (흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향)

  • Eun, Young-Ah;Kim, Dong-Chan;Cho, Kyu-Park;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF