• Title/Summary/Keyword: yttria stabilized zirconia

Search Result 259, Processing Time 0.027 seconds

침투법(infiltration)을 이용한 고체 산화물 연료전지용 복합체 전극 제조 및 평가

  • Park, Jong-Seong;Vohs, J.M.;Gorte, R.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.57.2-57.2
    • /
    • 2012
  • 산소 이온 전도성 세라믹을 이용한 고체 산화물 연료전지의 전극은 원활한 전기화학반응을 위해, 이온 전도도, 전자 전도도 및 전기화학적 활성을 동시에 가지고 있어야 한다. 이를 위해 복합체 전극을 사용하며, 특히 음극의 경우 니켈(Nickel)과 Yttria-stabilized zirconia (YSZ)로 이루어진 복합체 전극을 혼합 및 소결을 통해 제조하여 사용하였다. 하지만, 니켈의 경우 탄화 수소 연료에서의 탄소 침적 문제와 열악한 산화환원 안정성(redox stability)등의 문제점을 가지고 있다. 따라서 니켈대신 전도성 세라믹을 사용한 세라믹 복합체 음극 개발이 활발히 이루어지고 있으며, 그 중 침투법(infiltration method)을 이용한 복합체 전극 제조 방법을 소개한다. 실제로 니켈 금속과 유사한 높은 전기 전도도를 갖는 Sr-doped Lanthanum Vanadate (LSV)을 이용해, YSZ-LSV 복합체 전극을 침투법을 이용해 제조하고, 소량의 촉매을 첨가하여, 이온전도도, 전자 전도도 및 촉매 활성을 갖는 복합체 음극을 제조하였다. 이 복합체 음극의 탄화수소에서의 연료전지 성능 및 redox stability을 측정하였다.

  • PDF

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G.;Jang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Preparation of Spherical Monodispersed Y-doped ZrO2 Powders from Metal Alkoxide (금속 알콕사이드로부터 구형의 단분산 Y-doped $ZrO_2$ 미립자 제조)

  • 김병익;이중윤;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • 3 mol% Y2O3-doped ZrO2 powders were prepared by hydrolysis with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mol/ιH2O/ethanol into 0.1 mol/ι zirconium and yttrium alkoside/ethanol. Spherical monodispersed yttria-partially stabilized zirconia particles with an average diameter of about 0.5 ${\mu}{\textrm}{m}$ were prepared by hydrolysis with 0.2 mol/ιH2O/ethanol. The as-prepared powder was amorphous and with heating it transformed into cubic up to 80$0^{\circ}C$ and into tetragonal over 100$0^{\circ}C$. 3 mol% Y2O3-doped ZrO2 powders calcined over and up to 80$0^{\circ}C$ were a mixture of tetragonal and monoclinic and only tetragonal as determined by X-ray diffraction, respectively.

  • PDF

The Solid State Bonding or ZrO2/NiTi: (I) Optimizating of Bonding Condition and its Strength (ZrO$_2$와 NiTi 합금의 고상접합 : (I)접합의 최적조건 및 접합강도)

  • Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.654-660
    • /
    • 1991
  • Stabilized Zirconia (3 mol % Yttria, 3Y-TZP) was joined with intermetallic compound NiTi which has similar thermal expansion coefficient. The optimum bonding condition was determined by the Taguchi Method. Under the optimum bonding condition, the 4-point bending strength was as high as 400 MPa. bonding interfaces were examined by optical microscope, SEM, and TEM; reaction products were identified by XRD and TEM, The relationship between products and strength was examined.

  • PDF

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test (압입시험법에 의한 YSZ 층상 열차폐 코팅재의 기계적 거동)

  • Lee, Dong-Heon;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • In this study, we investigated the mechanical behaviors of layered thermal barrier coatings by indentations. Various single and double-layered thermal barrier coatings were deposited by air plasma spray process using different type of commercialized YSZ (Yttria stabilized zirconia) starting powders. Indentation stress-strain curve, load-displacement curve and hardness of the single and the double-layered thermal barrier coatings were obtained experimentally and analyzed. The indentation damages at the same loads were compared, and thus, the results depend on the structure of each coating. The result indicates improvement in damage resistances from tailoring of layered structures in the component of gas turbine system is expected.

Sintering of Mechanically Alloyed YSZ Nanocrystalline Powders

  • De la Torre, M. A. Lopez;Dura, O. J.;Hernandez, M.;Garcia-Cordobes, M.;Herranz, G.;Sanchez-Bautista, C.;Rodriguez, G. P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.670-671
    • /
    • 2006
  • We report on the mechanical and structural properties of nanocrystalline 8% and 10% mol yttria stabilized zirconia (YSZ) obtained using mechanical alloying (MA). The as-milled powders show a body-centered cubic structure with grain sizes in the nanometer scale. After uniaxial pressing and sintering the compacts exhibit good mechanical properties. We discuss the correlation of these enhanced properties with the microstructural changes induced by heat treatment.

  • PDF

Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System (수성 현탁액에서 카르복실기를 포함하는 혼합 분산제에 의한 이트리아 안정화 지르코니아의 분산성 향상)

  • Kim, Soo-Hyun;Kang, Jong-Bong;Bae, Sung-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.82-88
    • /
    • 2018
  • Stable slurries of YSZ in aqueous suspension with added polymer dispersants, namely, poly-methacrylic acid ammonium salt (PMMA), poly-acrylic acid (PAA) and poly-acrylic-co-maleic acid (PAMA), were mixed with the monomolecular dispersants citric acid and oxalic acid. The dispersion properties of the suspension were investigated using PSA, viscosity, sedimentation, and FT-IR. The polymer dispersants and monomolecular dispersants were attached to the YSZ surface by the carboxylic group, as shown by the FTIR results. A stabilized aqueous suspension was obtained when the polymer dispersant and citric acid were mixed and compared to the use of citric acid alone as a dispersant agent. When the polymer dispersant and citric acid were mixed and milled through attrition milling, there was a smaller particle size compared to when the polymer dispersant alone was used as a dispersant agent. This study determined that the particle size of the mixed dispersant was affected by the properties of the monomolecular dispersant and that the stability of the suspension was affected by the polymer dispersant. However, when slurries of YSZ were mixed with oxalic acid, the particle bridging behavior was the result of the high degree of viscosity and the small sedimentation height.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF