• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.025 seconds

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite

  • He, Wentao;Yao, Yong;He, Min;Kai, Zhang;Long, Lijuan;Zhang, Minmin;Qin, Shuhao;Yu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.112-116
    • /
    • 2013
  • Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.

Antioxidant Activity and α-Glucosidase Inhibitory Effect of Jerusalem Artichoke (Helianthus tuberosus) Methanol Extracts by Heat Treatment Conditions (열처리에 따른 돼지감자 Methanol 추출물의 항산화 및 α-glucosidase 저해 효과)

  • Jeong, Hyeon-Ju;Kim, Ju-Sung;Sa, Yeo-Jin;Kim, Myeong-Ok;Yang, Jinfeng;Kim, Myong-Jo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.257-263
    • /
    • 2011
  • This study investigated the changes of antioxidant activity and ${\alpha}$-glucosidase inhibitory effect of Jerusalem artichoke (Helianthus tuberosus) 100% methanol extracts by various heat treatment. The contents of total phenolic and flavonoid compounds in methanol extract tended to increased gradually with the rise of temperature to 180$^{\circ}C$. The maximum yield of gallic acid (51.52 ${\pm}$ 2.17mg/g extract weight) and quercetin (13.39 ${\pm}$ 0.03mg/g extract weight) were obtained with extraction temperature of 180$^{\circ}C$ for 120min. In addition, the improving extraction efficiency resulted in the increased biological activities, such as electronic donation ability (EDA, 90.36${\pm}$ 0.57%), reducing power (Abs 1.14) and ${\alpha}$-glucosidase inhibitory effect (92.14 ${\pm}$ 1.14%). Overall, the results of this study indicate that the optimum conditions for the extraction process were an extraction temperature at 180$^{\circ}C$ for 120 min, and will provide the basis for future research on the improving extraction yield of phenolic and flavonoid compounds.

The Extraction of Lignin and Production of Vanillin from Rice Straw (볏짚으로 부터의 리그닌 추출 및 바닐린 생성)

  • 정원진;이호원유인상김우식
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.81-85
    • /
    • 1990
  • Lignin was extracted from the rice straw by using the solvent mixture of buthyl alcohol and distilled water. And the experiment of vanillin production from extracted lignin was performed with the oxidation catalysts; CuO, Cu(OH)2 and CuSO4.5H2O. The optimum conditions of lignin extraction are the reaction temperature 12$0^{\circ}C$ and the mixture of 250mL buthyloloohol, 250mL, distilled water and 25g rice straw in the presence of 2.5g p-toluenesulfonic acid. The yield of vanillin from extracted lignin increased linearly with the increase of reaction temperature. And it increased with the order of Cu(OH)<$_2$ CuO$_4\cdot \;5H_2$Oas oxidation catalysts. The maximum yield of vanillin was 9% in the presence of 2.5%(w/v) CuSO$_4\cdot \;5H_2$O under the following conditions: temperature, 18$0^{\circ}C$; pressure, 13atm; pH 4.0 and reaction time, two hours.

  • PDF

Production of Methyl Ester from Coconut Oil using Microwave: Kinetic of Transesterification Reaction using Heterogeneous CaO Catalyst

  • Mahfud, Mahfud;Suryanto, Andi;Qadariyah, Lailatul;Suprapto, Suprapto;Kusuma, Heri Septya
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.275-280
    • /
    • 2018
  • Methyl ester derived from coconut oil is very interesting to study since it contains free-fatty acid with chemical structure of medium carbon chain ($C_{12}-C_{14}$), so the methyl ester obtained from its part can be a biodiesel and another partially into biokerosene. The use of heterogeneous catalysts in the production of methyl ester requires severe conditions (high pressure and high temperature), while at low temperature and atmospheric conditions, yield of methyl ester is relatively very low. By using microwave irradiation trans-esterification reaction with heterogeneous catalysts, it is expected to be much faster and can give higher yields. Therefore, we studied the production of methyl ester from coconut oil using CaO catalyst assisted by microwave. Our aim was to find a kinetic model of methyl ester production through a transesterification process from coconut oil assisted by microwave using heterogeneous CaO catalyst. The experimental apparatus consisted of a batch reactor placed in a microwave oven equipped with a condenser, stirrer and temperature controllers. Batch process was conducted at atmospheric pressure with a variation of CaO catalyst concentration (0.5; 1.0; 1.5; 2.0, 2.5%) and microwave power (100, 264 and 400 W). In general, the production process of methyl esters by heterogeneous catalyst will obtain three layers, wherein the first layer is the product of methyl ester, the second layer is glycerol and the third layer is the catalyst. The experimental results show that the yield of methyl ester increases along with the increase of microwave power, catalyst concentration and reaction time. Kinetic model of methyl ester production can be represented by the following equation: $-r_{TG}=1.7{\cdot}10^6{_e}{\frac{-43.86}{RT}}C_{TG}$.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

A Study on the Style Factors of Office Investment -An Analysis using Appraisal-based Returns- (오피스 투자의 스타일인자에 관한 연구 -평가기반 수익률을 기준으로-)

  • Min, Seonghun;Lee, Young Ho
    • Korea Real Estate Review
    • /
    • v.24 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • A test on the significance of style factors which were revealed to be significant in U.S. and U.K. literature is conducted in this study using appraisal-based returns of offices in Korea. Region, size (appraisal value), value-growth propensity (yield gain gap) and leasing conditions (the number of tenants, the length of average leased period and the proportion of key tenant) are included in the analysis model as style factors. The empirical result suggests that firstly core region and large size are significant but they increase risk as well as return contrary to general belief, secondly value propensity significantly decreases risk as well as return as it does in U.S. and U.K., finally the number of tenants among leasing conditions decreases risk as well as return but the length of average leased period and the proportion of key tenant are not significant.

Physiological responses to salt stress by native and introduced red algae in New Zealand

  • Gambichler, Vanessa;Zuccarello, Giuseppe C.;Karsten, Ulf
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.

Response of Barley Genotypes to Fusarium Head Blight under Natural Infection and Artificial Inoculation Conditions

  • Khanal, Raja;Choo, Thin Meiw;Xue, Allen G.;Vigier, Bernard;Savard, Marc E.;Blackwell, Barbara;Wang, Junmei;Yang, Jianming;Martin, Richard A.
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.455-464
    • /
    • 2021
  • Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Impacts of Abnormal Weather Factors on Rice Production (패널분석-확률효과모형에 의한 등숙기 이상기상이 쌀 단수에 미치는 영향 분석)

  • Jeong, Hak-Kyun;Kim, Chang-Gil;Moon, Dong-Hyun
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.317-330
    • /
    • 2013
  • The yield of rice production is affected severely by abnormal weather events, such as flood, drought, high temperature etc. The objective of this paper is to assess impacts of abnormal weather events on rice production, using a panel model which analyzes both cross-section data and ti- me series data. Abnormal weather is defined as the weather event which goes beyond the range of ${\pm}2{\sigma}$ from the average of a weather factor. The result of an analysis on impacts of high temperature on rice production showed that the yield of rice was decreased 5.8% to 16.3% under the conditions of extremely high temperature, and it was decreased 8.8 to 20.8% under the conditions of both extremely high and heavy rain. Adaptation strategies, development of new varieties enduring high temperature and heavy rain, adaptation of crop insurance, modernization of irrigation facilities are needed to minimize the impacts of abnormal weather on rice production, and to stabilize farmers' income.