• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.03 seconds

Environmentally Friendly Phytal Animal Removal for Re-use of Holdfasts of Sargassum fusiforme (Harvey) Setchell: pH and Salinity (갈조류 톳의 포복지 재활용을 위한 친환경적 해적생물 구제: pH와 염분)

  • Hwang, Eun Kyoung;Yoo, Ho Chang;Kim, Se Mi;Yoo, Hyun Il;Baek, Jae Min;Park, Chan Sun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.306-310
    • /
    • 2014
  • The brown seaweed Sargassum fusiforme is an edible and highly valued in Korea. During the summer season, phytal organisms graze heavily on young algal blades and holdfastsof the species and substantially reduce harvestable biomass. Here, in this study, we investigated the effects of pH (range: 2~13) and salinity (range: 0~44 psu) on the removal of two major phytal animals, Caprella scaura and Gammaropsis utinomi, associated with S. fusiforme. We also examined the optimum quantum yield (Fv/Fm) of algae in the same experimental conditions to quantify the tolerance of algae to acid and salinity treatments. It was observed that the phytal animals showed more than 80% mortality at pH lower that pH 4 and the extreams of salinity (0~10 psu and 44 psu) after a 5 min of immersion. However, the quantum yield of S. fusiforme was not significantly different from controls within the pH 3~11 range, and the 0~44 psu salinity range. Precisely, if the pH and salinity conditions outside these ranges were used in comercial Sargassum culture, the removal of the animal species would be higher, but with reduced quantum yield of algae. Taken together, our study results indicated that the pH and salinity treatments could allow multiple harvests from the same holdfast of S. fusiforme.

Efficient Bioreduction of Ethyl 4-chloro-3-oxobutanoate to (S)4-chloro-3-hydrobutanoate by Whole Cells of Candida magnoliae in Water/ n-Butyl Acetate Two-phase System

  • Xua Zhinan;Fang Limei;Lin Jianping;Jiang Xiaoxia;Liu Ying;Cen Peilin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • The asymmetric biosynthesis of ethyl (S)-4-chloro-3-hydrobutanoate from ethyl 4-chloro-3-oxobutanoate was investigated by using whole cells of Candida magnoliae JX120-3 without the addition of glucose dehydrogenase or $NADP^+/NADPH$. In a one-phase system, the bioconversion yield was seriously affected on the addition of 12.1 g/L ethyl 4-chloro-3-oxobutanoate. In order to reduce this substrate inhibition, a water/ n-butyl acetate two-phase system was developed, and the bioreduction conditions optimized with regard to the yield and product enantiometric excess value. The optimal conditions were as following: water to n-butyl acetate volume ratio of 1:1, 4.0 g DCW/L active cells, 50 g/L glucose and $35^{\circ}C$. By adopting a dropwise substrate feeding strategy, high concentration of ethyl 4-chloro-3-oxobutanoate (60 g/L) could be asymmetrically reduced to ethyl (S)-4-chloro-3-hydrobutanoate with high yield (93.8%) and high enantiometric excess value (92.7%).

Supercritical Fluid Extraction of Safflower Yellow Pigments from Carthamus tinctorius L. (초임계 이산화탄소를 이용한 홍화로부터 황색소 추출)

  • Han, Byung-Seok;Kim, Kong-Hwan;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.363-366
    • /
    • 1998
  • Supercritical fluid(SCF) carbon dioxide was used to extract safflower yellow pigments from Carthamus tinctorius L. In this work, supercritical fluid extractions were performed at various conditions; pressure (2000, 3000, 4000, 5000 psig), temperature $(40,\;50,\;60,\;70,\;80^{\circ}C)$ and co-solvent $(0,\;3,\;6,\;10,\;14\;wt%\;H_2O)$. Total concentrations of safflower yellow pigments extracted were determined by spectrophotometric method. A maximum yield of yellow pigments was obtained at 4000psig, $60^{\circ}C$ and 10% co-solvent. The extraction yield of pigments was also closely related to moisture content of the raw material. Extraction yield of safflower yellow pigments by SCF extraction at optimized conditions was 6% higher than that by solvent extraction. Supercritical carbon dioxide was proved to be suitable for the extraction of safflower yellow pigments from Carthamus tinctorius L.

  • PDF

Studies for Processing Condition Optimization and Physicochemical Property of Resistant Starch (난소화성 전분 제조공정의 최적화 및 이화학적 특성 연구)

  • 한명륜;김우경;강남이;이수정;김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1193-1199
    • /
    • 2003
  • As a result of resistant starch yield depending on heating temperature, moisture content, storage temperature and heating-cooling cycle with RSM (response surface methodology), high amylose corn starch (46%) was appeared higher than normal corn starch in the yield (22%). At the high amylose corn starch, optimum conditions for resistant starch formation were 6 times of heating-cooling cycle, 108$^{\circ}C$ heating temperature and 67% moisture content at the 2$0^{\circ}C$ storage temperature, which resulted in 25% yield with these experiment conditions. Affecting factor for the resistant starch formation was arranged according to heating -cooling cycle, moisture content, heating temperature and storage temperature. Raw corn starch granule was destructive and appeared a porous reticular structure by the resistant starch formation. Color became dark and increased yellowness by caramelization during heating processing. Heating-cooling processing was the result of decreased hardness, cohesiveness, springiness and gumminess.

Effects of Fermentation Conditions on Production of Erythritol by Candida magnoliae (Candida magnoliae의 발효 조건이 erythritol의 생산에 미치는 영향)

  • Choi, Jung-Hyun;Kim, Myoung-Dong;Seo, Jin-Ho;Ahn, Jang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.708-712
    • /
    • 2003
  • This study was carried out to examine the effects of fermentation conditions on the production of erythritol by osmophilic yeast Candida magnoliae. It was found that sucrose was superior to glucose as carbon source and 109 g/L erythritol was produced from 400 g/L sucrose. When yeast extract was used as nitrogen source, maximum values of yield and productivity for erythritol were obtained at 15 and 20 g/L of yeast extract, respectively. A mixture of 15 g/L yeast extract and 3 g/L ammonium phosphate allowed more efficient utilization of sucrose and hence resulted in 149 g/L of erythritol, 0.37 g erythritol/g sucrose of erythritol yield and $0.78\;g/L{\cdot}hr$ of erythritol productivity. A batch fermentation supplemented with 40 g/L KCl resulted in an erythritol concentration of 167 g/L and an erythritol yield of 0.42 g erythritol/g sucrose.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Ginsenoside composition of Panax ginseng flower extracts obtained using different high hydrostatic pressure extraction conditions

  • Kim, Hyun Soo;Kim, Gyu Ri;Kim, Donghyun;Zhang, Cheng-Yi;Lee, Eun-Soo;Park, Nok Hyun;Park, Junseong;Lee, Chang Seok;Shin, Moon Sam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.56-60
    • /
    • 2019
  • Ginsenosides are active constituents of ginseng (Panax ginseng) that have possible anti-aging, physiological and pharmacological activities, such as anti-cancer and anti-inflammatory effects. Although the ginseng root is generally used more often than the aerial parts for medicinal purposes, the flowers also contain numerous ginsenosides, including Rb2, Rc, Rd, Re and Rg1. Therefore, an extract from the flowers of the P. ginseng could have the pharmacological efficacy of bioactive compounds including ginsenosides. The high hydrostatic pressure extraction (HHPE) is a method that is used for the efficient extraction of bioactive compounds from plant materials. In this study, we compared the yield of ginsenosides from ginseng flowers under different conditions of extraction pressure and time of HHPE. The results indicate that the total yield of the ginsenosides improved as the pressure increased from 0.1 to 80 MPa and treatment duration increased to 24 hours. In addition, the ginsenoside extracts from HHPE at 80 MPa, which possessed a higher total ginsenoside concentration, decreased the viability of the primary human epidermal keratinocytes (HEKs) significantly than the ginsenoside extracts from HHPE at 0.1 MPa. Collectively, we found that the method of HHPE that was performed for 24 hours at 80 MPa showed the highest yield of ginsenosides from the flowers of P. ginseng. In addition, our study provides a foundation for the efficient extraction of ginsenosides, which had a potent bioactivity, from flowers of P. ginseng through HHPE.

The Study of Optimal Conditions for Synthesis and Purification of 1, 2-Octanediol Galactoside (1, 2-Octanediol Galactoside 합성을 위한 최적 조건 및 정제 연구)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • 1, 2-Octanediol (OD) as a cosmetic additive has been used simultaneously as a preservative and humectant. To solve the skin problem by 1, 2-octanediol (OD), we have synthesized 1, 2-octanediol galactoside (OD-gal) using Escherichia coli β-galactosidase (β-gal). Meanwhile, the optimal amount of β-gal, OD concentration, pH, and temperature for OD-gal synthesis were 4.5 U/ml, 150 mM, 7.0, and 37℃, respectively. Under these conditions, 150 mM OD was converted into about 55.9 mM OD-gal during 24 hours, in which the conversion yield (mole basis) was about 37.2%. In addition, OD-gal of 67.4 mg could be purified from a 9 ml reaction mixture, in which the overall synthesis yield from OD to the purified OD-gal was about 34.1% (weight basis) and 16.2% (mole basis), respectively. We are expecting that these results will be helpful to develop a safer additive in the cosmetic industry as basic data.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF