• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.032 seconds

Investigating production parameters and impacts of potential emissions from soybean biodiesel stored under different conditions

  • Ayoola, Ayodeji Ayodele;Adeniyi, David Olalekan;Sanni, Samuel Eshorame;Osakwe, Kamsiyonna Ikenna;Jato, Jennifer Doom
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Biodiesel production parameters and the impact analysis of the potential emissions from both soybean biodiesel and washing water stored in three different environmental conditions were investigated. The effects of the reaction temperature, methanol/oil mole ratio and catalyst concentration on biodiesel yield were considered. And the results showed optimum biodiesel yield of 99% obtained at $54^{\circ}C$, 7 methanol/oil mole ratio and 0.4 wt/wt % catalyst concentration. The potential emissions from both the biodiesel produced and washing water stored (for six weeks) in refrigerator (${\leq}10^{\circ}C$), vacuum (50 kPa) and direct exposure to atmosphere were identified and quantified. Impact analysis of the emissions involved their categorization into: terrestrial acidification, freshwater eutrophication, human toxicity, terrestrial ecotoxicity, climate change and freshwater ecotoxicity. Freshwater ecotoxicity category had the most pronounced negative impact of the potential emissions with $5.237710^{-2}kg\;1,4-DB\;eq$. emissions in Atmosphere, $4.702610^{-2}kg\;1,4-DB\;eq$. emissions in Refrigerator and $3.966110^{-2}kg\;1,4-DB\;eq$. emissions in Vacuum. Climate change had the least effect of the emissions with $6.214106^{-6}kg\;CO_2\;eq$. in Atmosphere, $3.9310^{-6}kg\;CO_2\;eq$. in Refrigerator and $1.6710^{-6}kg\;CO_2\;eq$. in Vacuum. The study showed that the order of preference of the storage environments of biodiesel is vacuum environment, refrigerated condition and exposure to atmosphere.

Synthetic Conditions and Rheological Characteristics of Barium Sulfate (황산바륨의 합성조건과 유동학적 특성)

  • Shin, Wha-Woo;Kim, Jun-Hea;Choi, Kwang-Sik;Chang, Young-Soo;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.538-547
    • /
    • 1992
  • Optimal synthetic condition of barium sulfate were investigated from the viewpoint of yield and bulkiness according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. Barium chloride and magnesium sulfate were utilized as reactants in order to prepare barium sulfate in this study. It was found that optimum temperature range of reactant solutions was $60{\sim}100^{\circ}C$ and the optimum concentration range of the reactant solutions was $10{\sim}17.3%$ and $10{\sim}20%$ respectively, on the viewpoint of yield and bulkiness. The optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum reacting time range was $15{\sim}20$ minutes. The optimum drying temperature range was $110{\sim}130^{\circ}C$ from the viewpoint of yield, but it was $90{\sim}110^{\circ}C$ on the basis of bulkiness. Apparent viscosity of barium sulfate suspensions dispersed in various concentrations of Na. CMC was measured by using Brookfield synchrolectric viscometer model LVT, the relative equation, log ${\eta}_{sp}=A+B.{\phi}$ was examined and the equation was found to agree fairly well. 1 w/v% Na. CMC aqueous solution and 0.1 volume fraction of $BaSO_4$ powder were optimum in the preparation of $BaSO_4$ suspension showing highest viscosity at infinite shearing.

  • PDF

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

Statistical Optimization of Antioxidant Extraction from Broussonetia kazinoki Using Ultrasound-assisted Extraction (초음파 추출공정을 이용한 닥나무로부터 항산화성분의 추출공정 최적화)

  • Lee, Seung Bum;Park, Bo Ra;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.565-570
    • /
    • 2018
  • In this study, the antioxidant was extracted from Broussonetia kazinokii using ultrasound-assisted extraction (UAE) and optimized by using a response surface methodology. The response value of the central composite design model establishes the extraction yield and the DPPH radical scavenging activity. The extraction time and temperature and volume ratio of ethanol/ultrapure water were selected as quantitative factors. When considering both the main and interaction effects, the factor having the greatest influence on the extraction yield and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was the volume ratio of ethanol/ultrapure water. The results of optimal extraction conditions were the extraction time (19.92 min), volume ratio of ethanol/ultrapure water (54.23%), and ultrasonic irradiation power (557.65 W). We could also obtained expected results of the yield = 38.93 wt% and DPPH radical scavenging activity = 55.33% under these conditions.

Overexpression of OsNAC17 enhances drought tolerance in rice

  • Kim, Tae Hwan;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.168-168
    • /
    • 2017
  • Drought conditions during cultivation reduce agricultural production yield less than a theoretical maximum yield under normal condition. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. In this study, we report the rice (Oryza sativa L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, was contribute to the drought tolerance mediated reactive oxygen species (ROS) in transgenic rice plants. Constitutive (PGD1) promoter was introduced to overexpress OsNAC17 and produced the transgenic PDG1:OsNAC17. Overexpression of OsNAC17 throughout the whole plant improved drought resistance phenotype at the vegetative stage. Morphological characteristics such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. The improved drought tolerance in transgenic rice was involved in reducing stomatal density up to 15% than in wild type plants and in increasing reactive oxygen species-scavenging enzyme. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). These genes included UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. Furthermore, OsNAC17 was act as a transcriptional activator, which has an activation domain in C-terminal region. These result demonstrate that the overexpression of OsNAC17 improve drought tolerance by regulating ROS scavenging enzymes and by reducing stomatal density

  • PDF

Characteristics of inorganic nutrient absorption of potato (Solanum tuberosum L.) plants grown under drought condition

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung;Lee, Yonggyu;Kim, Juil;Ji, Samnyeo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.181-181
    • /
    • 2017
  • Global warming and climate change have been one of the most important problems last 2 decades. Global warming is known to cause abnormal climate and influence ecology, food production and human health. According to climate change model global warming is causing expansion of drought and increase of evaporation. Therefore, securing water in agriculture has been an important issue for crop cultivation. As potato is susceptible to drought, water shortage generally results in decrease of yield and decrease of biomass. In this research, we investigated characteristics of inorganic nutrient absorption and growth of plants grown under drought condition. Plants were sampled in sites of Cheong-ju and Gangneung, where the severity of drought stress were different. During the growth period in Gangneung, total rainfall in 2016 decreased by 50% compared with those in last 5 years average. Especially, there was almost no rain in tuber enlargement period (from mid-May to mid-June). On the other hand, the total rainfall in of Cheong-ju was is similar to those in last 5 years average. Inorganic components including K, Ca and Mg and plant growth factors such as plant length, stem length, leaf area index and plant biomass were investigated. Tuber yields in both areas were investigated at harvest. Growth period of plants was is longer in Cheong-ju than that in Gangneung. Contents of all inorganic components were higher in plants grown in Cheong-ju than in Gangneung. The results were attributed to higher production of plant biomass in Cheong-ju. Considering the results, severe drought stress conditions in Gangneung accelerated plant aging and resulted in low plant growth. Although total yield was greatly reduced under drought stress the rate of commercial yield was is not significantly different with non-drought conditions.

  • PDF

A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation (발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구)

  • KIM, JI-HUN;PARK, JAE-HEUN;CHOI, JAE-HYUN;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

Immobilization of Cyclodextrin Glucanotrasferase on Amberline IRA-900 for Biosynthesis of Transglycosylated Xylitol

  • Kim, Pan-Soo;Shin, Hyun-Dong;Park, Joong-Kon;Lee, Young-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.174-180
    • /
    • 2000
  • Cyclodextrin glucanotransferase (CGTasa) from Thermoanaerobacter sp. was adsorbed on the ion exchange resin Amberlite IRA-900. The optimum conditions for the immobilization of the CGTase were pH6.0 and 600 U CGTase/g resin, and the maximum yield of immobilization was around 63% on the basis of amount ratio of the adsorbed enzyme to intial amount in the solution. Immobilixation of CGTase shifted the optimum temperature for the enzyme to peoduce transglycosylated xylitol from 7$0^{\circ}C$ to 9$0^{\circ}C$ and improved the thermal stability of immobilized CGTase, especially after the addition of soluble starch and calcium ions. Transglycosylated xylitol was continuoncly produced using immobilized CGTase in the column type packed bed reactor, and the operating conditions for maximum yield were 10%(w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10%(w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10%(w/v) xylitor as the glycosyl acceptor, 20mL/h of medium fiow rate, and 6$0^{\circ}C$. The maximum yield of transglycosylated xylitol and productivity were 25% and 7.82 g.L-1.h-1, respectively. The half-life of the immobilized CGTase in a column type packed bed reactor was longer than 30 days.

  • PDF

Effects of Climatic Conditions on Budding of Buds and Growth of Mulberry(Morus alba L.) (기상환경이 뽕나무의 발아개엽 및 생육에 미치는 영향)

  • 조장호;문재유
    • Journal of Sericultural and Entomological Science
    • /
    • v.29 no.1
    • /
    • pp.12-19
    • /
    • 1987
  • This study was carried out to investigate the effects of climatic conditions on the budding of buds and the growth of shoots of mulberry (Morus alba L.) at Suwon for the period of six years from 1978 to 1983. The results are summarized as follows. 1. The period that influenced most greatly on mulberry budding and foliating of it's buds was from late part of March to middle part of April in the district of Suwon, Korea. 2. Temperatures in soil 20cm deep during the period from late part of March to middle part of April had high correlations with budding dates. 3. It was disclosed that the budding date had high correlations with the date of bud shaped swallow-bill (r=0.9861**), date of the third leaf(r=0.97**), and date of the fifth leaf(r=0.96**), respectively. 4. The higher the average temperature of April became, the longer the length of shoots became. 5. The earlier the budding date and foliating date came, the larger the leaf yield became. However, with excessive amount of precipitation after early budding and foliating, the leaf yield was not increased in proportional. 6. The longer the growing period of the shoots became, the larger the leaf yield became.

  • PDF

Effect of the Rain Shelter Cultivation on Disease Occurrence Inhibition and Growth in Peony(Paeonia lactiflora Pallas L.) (작약 비가림재배에 따른 병 발생 억제효과 및 생육 특성)

  • Kim, Se-Jong;Park, Jun-Hong;Kim, Jung-Hye;Park, So-Duck;Choi, Boo-Sull
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.2
    • /
    • pp.150-155
    • /
    • 2001
  • This experiment was carried out to investigate the effect of rain shelter cultivation on growth characteristic and yield on Paeonia lactiflora Pallas. The sprouting time and flowering time of rain shelter cultivation were 9days and 15days, more quickly than that of field conditions, and stem length and number of stem per plant were many more or larger. The disease occurrence rain shelter cultivation was decreased of rust, anthracnose, powdery mildew and root rot disease compared to field conditions, and leaf spot disease was to similar. The root length, number of root and root diameter were to be good in the rain shelter cultivation. Root color and commercial ratio of rain shelter cultivation were better lighten and improved than field cultivation. Root yield of rain shelter was 2,395kg/10a, this was increased 9% and 27% respectively, compared to 2,201kg/10a, 1,892kg/10a of field A and field B.

  • PDF