• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.035 seconds

Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields (논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1173-1178
    • /
    • 2012
  • Water competition among domestic, industrial and agricultural sectors has been gradually heightened recently in Korea as the lack of water supply is expected in the near future. About 46% of nation's water use is consumed in paddy farming to produce rice. And the conservation of water resource and quality in agricultural sector is a pending issue in the nation's long term water management plan. New paddy rice farming techniques that use significantly less irrigation water are urgently required. System of Rice Intensification (SRI) that is now well known to produce more rice with less water consumption has not been tried in Korea yet. And environmental effect of SRI on greenhouse gases (GHGs) has not been well investigated. The objective of this study was to measure the effect of SRI on GHGs as well as water use and rice yield in a Korean paddy condition. Three experimental runoff plots $5{\times}15m$ in size were prepared at an existing paddy field. Runoff, GHGs emission and water quality were measured during the 2011 growing seasons while a Japonica rice variety was cultivated. Rice plants grew better and healthier in SRI plots than in continuously flooded (CF) and intermittently drained (ID) plots. Rice yield from SRI plots increased 112.8 (ID)~116.1 (CF)% compared with CF and ID plots. Irrigation requirement of SRI plots compared to CF plot reduced by 52.6% and ID plot reduced by 62.0%, meaning that about 37.9~47.4% of irrigation water could be saved. GHGs emission from SRI plots reduced by 71.8% compared to that from CF plot and by 18.4% compared to that from ID plot, meaning that SRI could help contribute to ease the greenhouse gas accumulation in the atmosphere. It was believed that SRI is a promising paddy farming technique that could increase rice yield, and reduce irrigation water requirement and GHGs emission not just in Korea but also other rice farming countries all over the world. However, it was recommended that long term studies under different conditions including rice variety, soil texture, water source, climate need to be conducted for reliable data for the development of environmental policies related to GHGs emission control and management.

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

Utilization of Pigments and Tunic Components of Ascidian as an Improved Feed Aids for Aquaculture 1. Effective Extraction Methods of Crude Polysaccharides in Ascidian (Halocpthia roretzi) Tunic (우렁쉥이 껍질성분 및 색소를 이용한 양식소재 개발 1. 우렁쉥이 껍질 다당류의 추출방법)

  • LEE Kang-Ho;HONG Byeong-Il;CHOI Byeong-Dae;KANG Seok-Joong;RUCK Ji-Hee;JUNG Byung-Chun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.423-428
    • /
    • 1998
  • The effective extraction methods and chemical components of crude polysaccharides of ascidian tunics were investigated. Tow extraction conditions, autoclaving or enzyme treatment, were applied. The proximate composition of ascidian tunics was not much different between those dried in raw (containing pigments) and those acetone treated and dried (decolorized), showing $50\%$ of carbohydrate and $40\%$ of protein. It was possible to extract up to $10\%$ of crude polysaccharides from ascidian tunics regardless of the extraction methods, autoclaving or enzyme treatment. In case of the latter the extraction yield by neutrase was higher than that with alkalase (Novo co.) or mixture 2000 (Pacific chemical co.). The most effective enzyme concentration and extraction time appeared to be 24 hrs of extraction with $3\%$ neutrase. On the other hand, in autoclave treatment, 6 hrs extraction showed most desirable extraction yield, about $9.7\%$. The compositions of amino acid of decolorized ascidian tunic (acetone treated group) and the crude polysaccharide from the autoclaving (water solubles) or neutrase treatment (enzyme digestibles) were similar to each other. Histidine was the highest both in the neutrase and autoclave treatment group and the yield were $29.2\%,\;20.4\%$, respectively, followed by aspartic acid and glutamic acid. Among the minerals, the content of Ca was significantly high, followed by Mg and Na.

  • PDF

Studies on the Direct Sowing Culture of Rice in Reclaimed Paddy Field (간척답 벼 직파재배에 관한 연구)

  • Lee, Seok-Su;Shim, Jae-Sung
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.49-62
    • /
    • 1992
  • This study was carried out to investigate the emergence, growth and yield components in rice inassoccation with Several cultivation methods direct sowing flooded paddy field(DSF), direct sowing by airplane(DSA), direct sowing in dry paddy field(DSD), 8days seedling planting(8DS), and 35days seedlingplanting(35DS). Also this study was attempeted to know the effects of calcium peroxide on germinationand early growth of rice under different soil conditions, seeding depth, application of organic matter,indirect sowing flooded paddy field.1. Rate of emergence was 73% in DSF, 70% in DSA, 62% in DSD, respectively, under the different cultivation method of rice in reclaimed paddy field.2. Degree of lodging in relation to cultivation was 5 at both DSF and DSA, 3 at DSD, 2 at both 8DS and 35DS respectively.3. Maximum tiller number was 568 per m2 at DSF and 527 at DSA. Heating was delayed for 4 days at DSF, 8 days at DSD and 2 days at 8DS as comparison with that at 35DS.4. Yield was higher 1% to 3% at DSF than that at DSA and DSD while decreased by 12% as compared with that of seedling planting.5. Total dry weight of seedling was decreased by 57% at 8DS, 60% at DSF 63% at DSD, respectively, under 0.3% of salinity. Ratio of decreasing in dry weight was higher with high salinity.6. The amount of O2 released was recorded highest to 2 to 3days after irrigatition, thereafter remaining constant to 10 days after irrigatition.7. The optimum coating amount of calcium peroxide for germination was a half of rice seed weight with 1 cm sowing depth and one-fold with 2-cm sowing depth when rice straw was not applied. With rice straw applied, on the other hand, the amount of peroxide was one-fold with 1-cm sowing depth. It was found that, under the condition of applied 600kg/10a, of 2-cm soil depth with rice straw calcium peroxide coating had no effect on emergence of rice seedling.8. In reclaimed paddy field, lodging degree was 7 with direct sowing by machine and 9 with direct sowing by hand.9. Yield was increased by 5% by applying rice straw with direct sowing by machine.

  • PDF

Effect of Slaked-Lime and Straw on the Soil pH, Nutrient Uptake and Yield of Rice in Akiochi Paddy Field (추락답(秋落沓)에 있어서 소석회(消石灰)와 생고시용(生藁施用)이 토양(土壤) pH, 수도(水稻)의 양분흡수(養分吸收) 및 수량(收量)에 미치는 영향(影響))

  • Ahn, Su-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1976
  • This study was conducted to determine the effect of slaked lime and straw used on the soil pH in the flooded condition and yield of rice grown in AKIOCHI paddy field and their residual effects on the rice plants. The results obtained were summarized as follow: when lime and straw were applied, there was on the average 41% of yield increase over plots treated with three elements of chemical fertilizers. When lime plus straw were used, the growth rate at later stage of rice plant was prominent. Damage due to helminthosporium and blast were found less, the rate of lower-leaf death was low, and grain number, per head, filled grain ratio, and weight of rice grain were higher than control. When lime plus straw were used, higher amount of silicate, calcium, nitrogen and potassium was found in the plants at heading stage. The residual effects of lime plus straw were 20% in the first year, about 10% in the second year and 5% in the third year, respectively. Soil pH was affected by both straw and slaked lime, and it was fixed about 8 days after applying in the flooded condition. The following formulae was suggested from the results in the flooded conditions. $$pH=5.5293+8.6007X_1+2.7836X_2-{6.7422X_1}^2-{1.8522X_2}^2-7.000X_1X_2$$ ($X_1$=slaked lime, $X_2$=straw)

  • PDF

Study on Vinyl Coating Cultivation of Potatoes under Low Temperature Conditions (조기 재배시 감자의 비닐 피복 재배 연구)

  • Choi, Kwan Soo;Jung, Gun Ho
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.556-564
    • /
    • 2017
  • Appropriate soil temperature and early planting of potato is very important for the successful potato-soybean cropping system in central region of South Korea. This experiment was carried out to determine the effect of mulching materials on the growth and yield of potato (Solanum tuberosum L.). Five different mulch treatments were had been applied on an upland soil as follows ; no mulch (NM), transparent film (TF), transparent film + additional transparent film (TF + ATF), black film (BF), and black film + additional transparent film (ATF). In the period of sowing time to removing additional films, mean soil temperature of the treatments was in the order of TF+ATF > TF > BR+ATF > BF as $20.3^{\circ}C$ > $18.5^{\circ}C$ > $16.1^{\circ}C$ > $15.4^{\circ}C$, respectively and that of NM was $13.8^{\circ}C$. The accumulated soil temperature was TF > NM > BF during the removing additional films to earthing at inter-tillage. On the changes in the soil temperature during a whole day, the temperature in the BF was lower than NM during around 18:00 PM to 12:00 NM, while NM was higher than BF in the time period of 10:00AM to 21:00PM. The sequence of potato sprout emergence was 15 > 18 > 20 > 22 days of TF+ATF, TF, BF+ATF, and BF, respectively and that of NM was 24 days. Comparing to the NM, potato sprout emergence was observed on the TF+ATF treated plot as early as 9 days. At 10 days before harvest, the significant difference in the tuber dry weight had been observed and the sequence tuber weight was in the order of TF > TF+ATF > BF+ATF > BF > NM. The potato yields of TF, TF+ATF, and BF+ATF were increased of 40.7, 37.3, and 22% as compared to NM ($2,805kg\;10a^{-1}$), but almost same yield in the BF. The differences of tuber dry weight and potato yields was co-related with the temperature rise of soil by the application of mulching materials on soil. Based on these results, application of mulching film had been very effective to increase the tuber size and the yield of potato by the temperature rise during seedling stage of potato. Transparent mulching was better than black mulching especially for the emergence of sprout of potato in relation to minimizing cooling injury.

The Use of Green Manure Crops as a Nitrogen Source for Lettuce and Chinese Cabbage Production in Greenhouse (녹비작물의 토양환원이 상추 및 얼갈이 배추의 수량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.212-216
    • /
    • 2012
  • BACKGROUND: Green manure and graminaceousmanure crops have several benefits, such as improving soil physical and chemical properties and utilizing excessive greenhouse nutrients that they have a potential to be a water pollutant source. METHODS AND RESULTS: The objective of this study was to investigate nitrogen (N) supplying capabilities of green manure and graminaceous manure crops for lettuce (Lactuca sativa L.) and Chinese cabbage (Brassica campestris L.) grown under greenhouse conditions. For this two leguminous manures (Crotalaria juncea (Cr.) and Sesbaniaexaltata (Se.)) and two graminaceous manures (Sorghum bicolor; Haussolgo(Ha.) and Sudangrass (Sg.)) in the greenhouse were grown, cut, and incorporated into the greenhouse soil before planting. Chemical nitrogen (N) fertilizer rate was estimated based on N recommendation for lettuce and Chinese cabbage. 100% of the N recommended rates (1N) were 70 kg N $ha^{-1}$ for lettuce and 60 kg N $ha^{-1}$ for Chinese cabbage and 50% of the N recommendation rates (0.5N) were 35 kg N $ha^{-1}$ for lettuce and 30 kg N $ha^{-1}$ for Chinese cabbage. Nitrogen treatments were control (0N), Cr., Se., Cr + 0.5 N, Se + 0.5 N, Ha + 0.5 N, Sg + 0.5 N, and N recommendation rate (1N). Incorporated N from green manure and graminaceous manure crops were 130, 116, 93, and 87 kg N $ha^{-1}$ for Cr., Se., Ha., and Sg., respectively. Lettuce and Chinese cabbage were grown after incorporated green manure crops into the greenhouse soil. There was no significant difference in lettuce and Chinese cabbage yields under N treatments except control (0 kg/ha). Nitrogen use efficiency (NUE)was from 44% to 73% and the highest NUE was under Se. treatment. Although yields were not statistically different under N treatments except control, actual yield increase ranged from 170 to 1,100 kg/ha for lettuce and ranged from 2,770 to 5,210 kg/ha for Chinese cabbage compared to yield under N recommendation rate. Estimated economic benefit from this would be higher approximately between \2,770,000 and \5,210,000/ha under N treatments except control than the N recommendation rate. CONCLUSION: These results suggest that incorporating green manure crops, such as Cr. and SeSe. into soil or adding 0.5 N after incorporation of them can be beneficial in many ways in that it increases economic return because of yield increase, reduces the use of chemical N, and decreases the negative environmental impact on water quality because excessive N in the greenhouse soil can be used by green manure crops during the fallow.

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Beneficial Effect of Heat Fans on Quality and Yield of Korean Melon Cultivated in Greenhouses at Winter Season (히터팬 처리가 저온기 하우스 참외의 품질 및 수량에 미치는 긍정적 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Oh, Su Whan;Cheung, Joung Do;Sohn, Hyoung Rac;Do, Han Woo;Kim, Mi Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • The purpose of this study was to investigate the changes of environmental conditions and the quality and yield of melon fruit by heat fan operation in greenhouses at winter season. The average daily temperature inside the tunnels during January 1 to 31, 2017 was $0.9^{\circ}C$ higher than that of the control $17.8^{\circ}C$. The air flow rate of heater fan treatment was 4.8 times higher than the control (untreated $0.05m{\cdot}s^{-1}$) at 20cm above the ground where the korean melon grew. The temperature of the heater pan was $5.6^{\circ}C$ higher than that of the untreated at $35.3^{\circ}C$ and the relative humidity was 8.1% lower than that of the untreated at 39.1%. The flowering rate of the heater fan treatment was 96%, 5% higher than the control. The number of first harvest days of heater fan treatment was shortened by 4 days than that of untreated treatment. Fruit quality and marketable fruit yield increased by 3.4% and 38% compared to untreated respectively, the heater fan treatment increased the temperature inside the greenhouse and air flow rete, which were beneficial for growing the korean melon in greenhouses at winter season.

Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach 'Mihong' (Prunus persica) (온도 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 2020
  • This study was conducted to investigate the effect of elevated temperatures on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different temperature conditions in the sunlight phytotron rooms from April 25 to July 5, 2019; Control (average temperature in normal years in Jeonju city), +3.4℃ treatment (expecting temperature in mid-21st century), +5.7℃ treatment (expecting temperature in late 21st century). The shoot numbers and lengths were increased while the temperature was increased, but the leaf areas were not statistically different. The harvest dates were July 1, June 24 and 21 at the control, +3.4℃, and +5.7℃, respectively. The fruit weights were increased at +3.4℃ but decreased at +5.7℃ compared to the control. The tree yield was the highest in the +3.4℃ (2,898g), followed by the control (2,746g) and the +5.7℃ (2,404g). These are related to the result that the average of maximum photosynthesis rate at 3.4℃ (14.93μmol·CO2·m-2·s-1) was higher than those at the control (13.79μmol·CO2·m-2·s-1) and +5.7℃ (13.20μmol·CO2·m-2·s-1) from mid-May to early June, the fruit growing season. Also, the stomatal densities were higher at the +3.4℃ (229ea/㎟), compared to the control (181ea/㎟). The rate of floral bud differentiation affecting the yield in the following year was the lowest at the +5.7℃. These results suggest that a temperature elevated to 3.4℃ in the future may give a positive effect on the yield and quality of peach 'Mihong' while a temperature elevated above 5.7℃ may affect negatively.