• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.03 seconds

Optimum Light Intensity and Fertilization Effects on Physiological Activities of Forsythia saxatil (산개나리의 생리적 활성에 대한 최적 광도 조건과 시비 효과)

  • Kim, Gil Nam;Han, Sim-Hee;Kim, Du Hyun;Yun, Chung-Weon;Shin, Soo Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.372-381
    • /
    • 2013
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated under different relative light intensities (RLI) and fertilization levels in order to find out the optimum environmental conditions for in-situ restoration. RLI and fertilization were four levels (30%, 43%, 63% of full sun and full sun) and three levels (non-fertilization, 2 times and 3 times of average forest soil in Korea), respectively. According to the increase of fertilization level under all RLI, leaf area increased and leaf dry weight and the ratio of leaf dry weight to leaf area decreased. As the fertilization level increased, photosynthetic pigment contents such as chlorophyll a, b and carotenoid under all RLI decreased. And pigment contents were the highest under full sun in the same fertilization level. Foliar nitrogen content under fertilization was higher than that under non-fertilization, and chlorophyll/nitrogen ratio decreased with the increase of fertilization level under all RLI. The increase of photosynthetic rate was observed with the increase of fertilization level at 63% of RLI and full sun, and dark respiration rate under fertilization was lower than under non-fertilization. Apparent quantum yield was lower at non-fertilization than that of fertilization, and it was highest at 63% of RLI under the same fertilization level. In conclusion, leaf growth and physiological characteristics of F. saxatilis could be improved under higher light conditions and fertilization.

Lactic acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus rhamnosus (전처리된 섬유소계 바이오매스로부터 Lactic acid생산)

  • Ahn, Su Jin;Cayetano, Roent Dune;Kim, Tae Hyun;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Lactic acid, the most widely occurring hydroxy-carboxylic acid, has traditionally been used as food, cosmetic, pharmaceutical, and chemical industries. Even though it has tremendous potential for large scale production and use in a wide variety of applications, high cost lactic acid materials are primarily problems. Lactic acid can be obtained on either by fermentation or chemical synthesis. In recent years, the fermentation approach has become more successful because of the increasing market demand for naturally produced lactic acid. Generally, lactic acid was produced from pure starch or from glucose. As an alternative, biomass which is the most abundant renewable resources on earth have been considered for conversion to readily utilizable hydrolysate. In this study, we conducted the fermentation method to produce L(+)-lactic acid production from pretreated hydrolysate was investigated by Lactobacillus rhamnosus ATCC 10863. The hydrolysate was obtained from pretreatment process of biomass using Ammonia percolation process (AP) followed by enzymatic hydrolysis. In order to effectively enhance lactic acid conversion and product yield, controlled medium, temperature, glucose concentration was conducted under pure glucose conditions. The optimum conditions of lactic acid production was investigated and compared with those of hydrolysate.

Cost Structure of Korean Manufacturing Industries connected with the Central Government's Environmental Investment (중앙정부의 환경투자 관련 제조업의 비용분석)

  • Min, Seung-Ki
    • Journal of Environmental Policy
    • /
    • v.9 no.4
    • /
    • pp.3-27
    • /
    • 2010
  • In this paper, we have analyzed the cost structure of the Korean manufacturing industry in relation to the central government's environmental investment(CGEI below) by applying translog variable cost function. Important findings are as follows. First, sufficiency degree of CGEI of 0.7230, less than optimal level of 1, causes production inefficiency. Therefore, central government should forward a strategy to raise CGEI to meet appropriate standards. In addition, inspite of the deficiency of CGEI, shadow priceis lower than market price due to q-value of 0.9572, yielding unfavorable conditions for CGEI. However, CGEI brings about increase in output, variable cost saving, and economies of scale of firms. Second, by comparing this study with an existing study(2010), we have discovered the following facts. In both studies, we find that there are deficiency of investment, unfavorable conditions in investment, economies of scale, and output increase due to investment. However, the current study has found that, CGEI, which shows efficiency by positive(+) shadow price, saves variable cost. Therefore, firms suffer from production inefficiency due to variable cost caused by a shortage of efficient CGEI. Moreover, the previous study conducted in 2010 found that investment in prevention of environmental pollution(IPEP below), which indicates inefficiency by negative(-) shadow price, cannot reduce variable cost. In such circumstances, firms yield abnormal production efficiency based on variable cost savings caused by inefficient IPEP. For this reason, firms should raise IPEP to optimal level to reduce IPEP inefficiency to achieve production efficiency by reducing variable cost.

  • PDF

Physiology, genomics and molecular approaches for lmproving abiotic stress tolerance in rice and impacts on poor farmers

  • Ismail, Abdelbagi M.;Kumar, Arivnd;Singh, R.K.;Dixit, Shalabh;Henry, Amelia;Singh, Uma S.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.7-7
    • /
    • 2017
  • Unfavorable weather and soil conditions reduce rice yield and land and water productivity, aggravating existing encounters of poverty and food insecurity. These conditions are foreseen to worsen with climate change and with the unceasing irrational human practices that progressively debilitate productivity despite global appeals for more food. Our understanding of plant responses to abiotic stresses is advancing and is complex, involving numerous critical processes - each controlled by several genetic factors. Knowledge of the physiological and molecular mechanisms involved in signaling, response and adaptation, and in some cases the genes involved, is advancing. Moreover, the genetic diversity being unveiled within cultivated rice and its wild relatives is providing ample resources for trait and gene discovery, and this is being scouted for rice improvement using modern genomics and molecular tools. Development of stress tolerant varieties is now being fast-tracked through the use of DNA markers and advanced breeding strategies. Large numbers of drought, submergence and salt tolerant varieties were commercialized over recent years in South and Southeast Asia and more recently in Africa. These varieties are making significant changes in less favorable areas, transforming lives of smallholder farmers - progress considered incredulous in the past. The stress tolerant varieties are providing assurance to farmers to invest in better management of their crops and the ability to adjust their cropping systems for even higher productivity and more income, sparking changes analogous to that of the first green revolution, which previously benefited only favorable irrigated and rainfed areas. New breeding tools using markers for multiple stresses made it possible to develop more resilient, higher yielding varieties to replace the aging and obsolete varieties still dominating these areas. Varieties with multiple stress tolerances are now becoming available, providing even better security for farmers and lessening their production risks even in areas affected by complex and overlapping stresses. The progress made in these less favorable areas triggered numerous favorable changes at the national and regional levels in several countries in Asia, including adjusting breeding and dissemination strategies to accelerate outreach and enabling changes at higher policy levels, creating a positive environment for faster progress. Exploiting the potential of these less productive areas for food production is inevitable, to meet the escalating global needs for more food and sustained production systems, at times when national resources are shrinking while demand for food is mounting. However, the success in these areas requires concerted efforts to make use of existing genetic resources for crop improvement and establishing effective evaluation networks, seed production systems, and seed delivery systems to ensure faster outreach and transformation.

  • PDF

Mobility of Water and Solute Intluenced by PHYSICAL PROCESSES in field Soils (포장에서 물리적 진행과정에 의해 영향을 받은 물질과 수분의 이동성)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1996
  • The self-diffusion coefficients of chloride and tritiated water ranged from 4.8 $\times$ 10-7 to 7.2 $\times$ 10-7 cm2/sec and 5.5 $\times$ 10-5 to 1.6 $\times$ 10-4 cm2/sec for three different depths of soil constituents at about 50% water content by volume, respectively Mobility of solute and water was conducted under steady-state flow conditions in a field soil consisting of 70 cm of clay to silty clay over a medium sand. A steady-state water flow conditions was maintained by applying irrigation water at a constant flux of 2cm per day. The water labeled with chloride and tritium was leached into the plot during the steady-state condition for 87 days. The positions of tritium and chloride as a function of soil depth and the time was measured by extracting samples of the soil solution with suction probes. Extremes in solute displacement occurred at equal and different depths within the plot. An analysis of these measurements indicated the observations of the pore-water velocity and the apparent diffusion coefficient were log normally disturbed. Twenty-four soil suction probes, used to identify the rate at which a solute was displaced in the soil, will yield an estimate of the mean pore-water velocity of this soils within a range of approximately 5% of its true value providing the effects of potential solute-soil interaction are taken into account.

  • PDF

Physicochemical Characteristics of Pumpkin(Cucurbita moschata Duch.) Powder with Different Treatment Conditions (처리 조건을 달리한 늙은호박 분말의 이화학적 특성)

  • Shin, Dong-Sun;Yoo, Yeon-Mi;Park, Bo-Ram
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.691-697
    • /
    • 2013
  • This study determines the processing suitability of pumpkin powder by assessing, the physicochemical properties of pumpkin powder subjected to different treatments: steaming, freezing and roasting. Pumpkin powder containing 13.61-16.05% moisture, 39.40-9.53% protein, 1.35-1.43% lipid, 0.26-0.50% ash, 5.01-5.65% yield, and 9.40-10.50 mg% sugar was used. In terms of color values, the L-value of control, a-value of the steamed sample, and b-value of the roasted sample waere the highest. The steamed sampled had the highest DPPH radical-scavenging activity. Reduction in sugar concentration varied significantly by treatments conditions (p < 0.05). Carotenoid concentration was the highest in control (19.75 mg%), followed by steamed sample (17.91 mg%), frozen sample (15.17 mg%), and the roasted sample (14.04 mg%). On the basis of these results, steamed pumpkin powder was identified as the most suited for instant processing.

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질)

  • BAE Tae-Jin;HAN Bong-Ho;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

Quality Characteristics of Canned Boiled Oyster Crassostrea gigas and Canned Boiled Oyster Crassostrea gigas Added with Chlorella Processed in Various Sterilization Conditions (살균조건을 달리하여 제조한 굴(Crassostrea gigas) 보일드통조림 및 클로렐라첨가 굴(Crassostrea gigas) 보일드통조림의 품질 특성)

  • Kong, Cheong-Sik;Lee, Jae-Dong;Yoon, Moon-Joo;Kang, Kyung-Hun;Park, Si-Young;Kang, Young-Mi;Sung, Tae-Jong;Kim, Jeong-Gyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.4
    • /
    • pp.427-435
    • /
    • 2016
  • The effects of salt solution and chlorella on the quality of canned oyster, Crassostrea gigas, were evaluated to obtain basic data regarding the processing of two canned oyster products. In canned oyster processing, the shucked oyster meat was steamed for 20 min and then drained. Then, each can (301-3) was filled with 90 g boiled oyster in 60 mL 1.5% salt solution for the control samples or 30 mL 1.5% salt solution and 30 mL chlorella culture medium for the experimental samples. All canned products were sealed using a vacuum seamer and then sterilized to Fo values of 6-12 min in a steam retort system at 118℃. The viable bacteria count, proximate composition, pH, salinity, yield, volatile basic nitrogen (VBN), amino-nitrogen, thiobarbituric acid (TBA), mineral, color value, free amino acid levels, hardness, and sensory evaluation of the two canned products were measured under various sterilization conditions. There were no significant differences in the physical or chemical factors and little difference in the overall acceptance of the control and experimental samples.

Optimum Conditions for Growing Gem-quality Colorless Cubic Zirconia (보석용 무색 큐빅 저코니아의 최적 육성 조건)

  • 김원사;유영문;신현숙
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.99-110
    • /
    • 2001
  • A gem-quality yttria-stabilized zirconium oxide crystals were synthesized by the skull-melting method, using the RF electrical apparatus. Principal raw materials used were $ZrO_2$and 25 wt.% $Y_2O_3$as stabilizer and 0.03~0.05 wt.% $Nd_2O_3$decolorizing agent were added to it. The single crystals were approximately 20$\times$63 mm in size with chemical composition $Zr_{0.73}$ $Y_{0.27}$ $O_{1.87}$ . The crystals are isotropic with no appreciable anisotropism under a polarizing microscope. Their refractive indices are in the range of 2.15~2.18, specific gravity 5.85, Mohs' hardness 8~8.5, and reflectivity 13.47%. The zirconia crystals were confirmed to have cubic structure with Face-centered lattice(Z=4), space group Fm3m ($CaF_2$-type structure) and unit cell parameters are a=5.157 $\AA$. The optimal growing conditions for yttria-stabilized zirconia are 50 kW, 2.94 MHz in power and to use a crucible with 105 mm $\times$ 135 mm in size. When the lowering speed of the crucible was set 16mm/hr gave the best yield, 42%. Since the refractive index(2.15~2.18) of cubic zirconia is smaller than that of diamond, the angle between crown and pavilion should be fashioned to make it smaller than $40.5^{\circ}$ to show the maximum brilliancy and fire.

  • PDF

Exopolysaccharide (EPS) Production by Lactobacillus paracasei KLB58 in Modified Medium under Different Growth Conditions (다양한 배지 환경이 Lactobacillus paracasei KLB 58의 Exopolysaccharide (EPS) 생산량에 미치는 영향)

  • Lee, Choong-Young;Jeon, Jeong-Min;Lee, Hae-In;Kim, Min-Hee;Jung, Mi-Kyoung;So, Jae-Seong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • Various probiotic Lactobacillus spp. are known to produce exopolysaccharide (EPS) which has potential health promoting functionality. A Lactobacillus paracasei strain producing EPS was isolated from healthy human. This strain, named L. paracasei KLB58, was grown on modified MRS medium. Experiments were conducted under various growth conditions to optimize the EPS production. Our study showed that incubation temperature played an important role in EPS production. When incubation temperature was changed from $37^{\circ}C$ to $25^{\circ}C$, the increase of EPS production (28.1 mg/ml) was the highest in our experiment. The type of carbon source in the medium also affected EPS production. Galactose was the most effective for EPS production among the carbon sources examined. Using galactose, glucose, lactose and sucrose, the amount of released EPS was 38.9 mg/ml, 35.6 mg/ml, 21.76 mg/ml and 16.9 mg/ml, respectively. However, acidity in growth medium inhibited EPS productivity due to the low growth yield. When grown at pH 4, L. paracasei KLB58 could only produce EPS of 14.6 mg/ml. When the initial amounts of nitrogen and carbon sources were examined, EPS production was not significantly affected by nitrogen source while carbon source affected considerably.