• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.033 seconds

Rooftop Vegetable Garden for Green Roof System (옥상 텃밭용 채소를 이용한 인공지반 녹화연구)

  • Ha, Yoo Mi;Kim, Dong-Yeob;Gu, Kyung Hee;Hwang, Dong Kyu;Park, Hee Ryung;Yun, Seong Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.77-88
    • /
    • 2011
  • This study was carried out to investigate the effects of soil depth and planting density on the growth of lettuce, crown daisy, and strawberry on a rooftop condition using artificial soil as a growth media. The vegetable crops showed better growth for plant height (cm), plant width (cm), plant fresh weight (g), and Fo, Fm and Fv/m on 20cm depth soil than 10cm depth soil except strawberry. Planting density of $16/m^2$ and $64/m^2$ did not show significant differences on the growth of the crops. Soil moisture content and EC were low for 10cm depth soil in lettuce plots, whereas there was no significant differences on soil moisture and EC between two soil depth in strawberry plots. Hunter's L, a, and b values showed the leaf color of lettuce dark green on 20cm depth soil and reddish on 10cm depth soil. Results showed that soil depth suitable for crop growth on rooftop conditions was 20cm rather than 10cm. Growth response of the crops showed no significant difference between $16/m^2$ and $64/m^2$, indicating that planting density of 64 $plants/m^2$ could be practiced on rooftop conditions. Lettuce growth rapidly changed in control treatment in which leaves were not pinched out, while slowly changed in plants which leaves were periodically pinched out. In the case of control plot, it was impossible to harvest because withering of lower leaves after blossom on June 22. The plant of crown daisy in which pinching was not conducted, blossomed on June 7, and the plants were removed since its aesthetical value was lost. Strawberry seemed to be a suitable vegetable crop for rooftop conditions based on its high covering rate and extended growth period until late October. The soil depth 20cm and planting density 64 $plants/m^2$ were suitable for vegetable crops on green roof system using artificial soil.

In-Bin Drying of Paddy with Ambient Air: Influence of Drying Parameters on Drying Time, Energy Requirements and Quality (상온통풍에 의한 벼의 In-Bin 건조 : 건조시간, 에너지 소요량 및 품질에 미치는 건조조건의 영향)

  • Cheigh, Hong-Sik;Muhlbauer, Werner;Rhim, Jong-Whan;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 1985
  • Low-temperature in-bin paddy drying has been examined to study the limitations of this drying method under Korean weather conditions, the initial moisture content of the paddy, the bulk depth and the airflow rate. The results are reported and discussed with regard to drying time, energy requirements and costs, uniformity in the moisture content of the dried kernels and, finally, the quality of the paddy. The tests carried out during the paddy-drying period in 1981 and 1982 have shown that under Korean weather conditions paddy can be dried to safe storage conditions by continuous aeration with ambient air. Depending upon the initial moisture content of the kernels(19.2%-25.5% w.b.), the bulk depth(1.1-3.5m) and the airflow $(3.0-6.9m^3\;air/m^3\;paddy/min)$ the paddy could be dried within 5 to 17 days. The energy requirements and energy costs are shown to be considerably lower than for conventional high-temperature drying. No significant changes in the quality in terms of milling yield, cracking ratio, acid value and germination were observed.

  • PDF

Development of an Efficient Bioassay Method to Evaluate Resistance of Chili Pepper Cultivars to Ralstonia solanacearum (고추 풋마름병에 대한 효율적인 저항성 검정법 확립)

  • Hwang, Sung Min;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Hun;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.334-347
    • /
    • 2017
  • Bacterial wilt caused by Ralstonia solanacearum is an important disease in cultivation of chili pepper, causing plant death and significant yield losses. Cultivation of disease-resistant varieties is the most suitable measure to control bacterial wilt of chili pepper. To establish an efficient screening method for resistant chili pepper to R. solanacearum, six resistant or susceptible cultivars to the R. solanacearum were selected and the development of bacterial wilt on the cultivars according to several conditions was investigated. Drenching bacterial suspension into the cut roots using a scalpel was more simple and effective to distinguish resistant and susceptible cultivars than inoculation methods of root-dipping or soil-drenching without wounding. A resistant pepper, 'MC4' to R. solanacearum showed high resistance under the developed conditions which were 21- to 28-day-old pepper inoculated with $1{\times}10^8cfu/ml$ of bacterial suspension. On the other hands, the susceptible cultivars represented high disease severity under the conditions. These results indicated that we developed an efficient method to evaluate resistance of chili pepper cultivars against bacterial wilt. In addition, we successfully evaluated resistance degree of 140 commercial chili pepper cultivars to R. solanacearum using the developed method.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

Cultural Characteristics of a Biosurfactant-Producing Microorganism Pseudomonas aeruginosa F722 (Biosurfactant 생산균주 Pseudomonas aeruginosa F722의 배양특성)

  • ;;;Motoki Kubo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.171-176
    • /
    • 2003
  • Productivity of biosurfactant (rhamnolipid) by Pseudomonas aeuginosa F722 was investigated in the several culture conditions and culture composition. Biosurfactant production by P. aeuginosa F722 was amounted to 0.78 g/l as the result of the nitrogen sources and carbon sources without investing of optimum conditions. As for that one was investigated, biosurfactant production by P. aeruginosa F722 was amounted to 1.66 g/l. Biosurfactant production increased twofold because the composition of a modified C-medium was investigated efficiently. $NE_4$Cl or $NaNO_2$ inorganic nitrogens and yeast extract or trypton organic nitrogens were effective, but others inorganic nitrogens and organic nitrogens tested were not efficient far biosurfactant production by P. aeruginosa F722. The optimum concentration of $NH_4$Cl; inorganic nitrogen and yeast extract; organic nitrogen were 0.05% and 0.1%, respectively. In various carbon sources, others with the exception of hydrophobic property substrate (n-alkane) and hydrophilic property substrate (glucose, glycol) were not found to be effective fur biosurfactant production, and 3.0% was better in yield than other concentration of glucose. This yielded C-to-N ratios between 17 and 20. In our experiment, the highest biosurfactant production by P. aeruginosa F722 were observed in 5 days cultivation, containing glucose 3.0%, $NH_4$Cl 0.05%, and yeast extract 0.1% and C-to-N ratio was 20. Optimal pH and temperature for biosurfactant production were 7.0 and $35^{\circ}C$, respectively. Under the optimal culture conditions with glucose, biosurfactant production was amounted to 1.66 g/l. Velocity of biosurfactant production and strain growth increased after nitrogen depletion. The average surface tension of 30 mN/m after the 3 days of incubation under optimal culture condition was measured by ring tensionmeter.

Bio-capsule Formation for Synchronous Saccharification and Fermentation Process (동시당화발효공정을 위한 바이오캡슐 형성)

  • Shin, Gyeong Yeon;Choi, Hye Jung;Kang, Yang-Rae;Nam, Ki-Du;Song, Ju Yeong;Joo, Woo Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.162-167
    • /
    • 2017
  • For the production of bioethanol by the synchronous saccharification and fermentation (SSF) process, bio-capsule formation was attempted. Many saccharifying fungal strains and fermentative yeast strains were first screened. Aspergillus sp. BCNU 6200, Penicillium sp. BCNU 6201, and P. chrysogenum KACC 44363 were found to be excellent producers of saccharifying enzymes such as ${\alpha}$-amylase and glucoamylase. Saccharomyces cerevisiae IFO-M-07 showed the highest ethanol productivity among the tested strains. Secondly, we determined the optimal conditions for pellet formation, and those for bio-capsule formation. All the tested fungal strains formed pellets, and the optimal conditions for bio-capsule formation were $28^{\circ}C$ and 120 rpm. Lastly, SSF process was performed using a bio-capsule. An ethanol yield of 3.9% was achieved by using the Aspergillus sp. BCNU 6200 bio-capsule (Aspergillus sp. BCNU 6200 + S. cerevisiae IFO-M-07) at $30^{\circ}C$ with shaking at 120 rpm during the 10 days of incubation. The results provide useful information on the application of a bio-capsule in bioethanol production under the SSF process.

Lipid Extraction from Spirulina platensis using Supercritical Carbon Dioxide and Analysis of Fatty Acid Compositions in Extracts (초임계 이산화탄소를 이용한 Spirulina platensis로부터 지질추출 및 지방산 조성 분석)

  • JOO Dong-Sik;CHO Man-Gi;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.417-422
    • /
    • 1998
  • This study was performed to obtain information about the extraction conditions of lipids from microalgae, Spirulina platensis, using supercritical fluid $CO_2$. Regardless of extraction temperature conditions, the extracted lipid contents increased as pressure increased, but decreased at 8500 psi on each temperature. The highest yield of extracted lipid content showed in the condition of 5500psi at $50^{\circ}C$, and extracted lipid content was about $20\%$. In same pressure the contents of C18 : 2 and C20 : 0 increased as temperature increased, but fatty acids composition were $60\~75\%$ saturated, $12\~20\%$ monounsaturated and $13\~31\%$ polyunsaturated regardless of extraction conditions. The C18 : 3 was only detected in the condition of 5500psi at $50^{\circ}C$ but the content was very little.

  • PDF

Characteristics of Collected Lines and Effect of Environmental Conditions on Growth of Rehmannia glutinosa Lib. (지황 수집종 특성과 재배환경이 생육에 미치는 영향)

  • Park, Chung-Heon;Park, Chun-Geon;Yu, Hong-Seob;Seong, Nak-Sul;Lee, Bong-Ho;Chung, Rye-Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.2
    • /
    • pp.138-142
    • /
    • 1999
  • Chinese foxglove (Rehmannia glutinosa) is receiving much attention as one of the principal medicinal crops and the demand for crude drug expands rapidly. This study was conducted to obtain the basic agronomic characteristics and cultivation information of Chinese foxglove. Morphological traits of several Chinese foxglove and their plant growth and yield were investigated under different environmental conditions. The tested lines exhibited clear morphological differences in leaves and roots representing their origins. Rapid root growth and weight increasement occurred in the middle of July. Optimum daylength and temperature conditions were investigated for the adequate plant growth of Chinese foxglove. Root growth was enhanced at $23/18^{\circ}C$ (day/night) with 13 hours daylength condition. Appropriate soil moisture and soil texture were $60{\sim}70%$ and loam soil, respectively.

  • PDF

Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production (에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석)

  • Kim, Kyoung-Suk;Park, Chan-Hyun;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.243-247
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

Development of Efficient Screening Methods for Resistant Cucumber Plants to Meloidogyne incognita (오이 뿌리혹선충병에 대한 효율적인 저항성 검정법 확립)

  • Hwang, Sung Min;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • Root-knot nematodes represent a significant problem in cucumber, causing reduction in yield and quality. To develop screening methods for resistance of cucumber to root-knot nematode Meloidogyne incognita, development of root-knot nematode of four cucumber cultivars ('Dragonsamchuk', 'Asiastrike', 'Nebakja' and 'Hanelbakdadaki') according to several conditions such as inoculum concentration, plant growth stage and transplanting period was investigated by the number of galls and egg masses produced in each seedling 45 days after inoculation. There was no difference in galls and egg masses according to the tested condition except for inoculum concentration. Reproduction of the nematode on all the tested cultivars according to inoculum concentration increased in a dose-dependent manner. On the basis of the result, the optimum conditions for root-knot development on the cultivars is to transplant period of 1 week, inoculum concentration of 5,000 eggs/plant and plant growth stage of 3-week-old in a greenhouse ($25{\pm}5^{\circ}C$). In addition, under optimum conditions, resistance of 45 commercial cucumber cultivars was evaluated. One rootstock cultivar, Union was moderately resistant to the root-knot nematode. However, no significant difference was in the resistance of the others cultivar. According to the result, we suggest an efficient screening method for new resistant cucumber to the root-knot nematode, M. incognita.