• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.028 seconds

Isolation of a High-Yield Mutant Strain for L-Proline Production and Its Fermentation Conditions

  • Ryu, Wuk-Sang;Jang, Hyung-Wook;Cho, Kyoung-Hee;Chang, Soon-Jae;Ryu, Yeon-Woo;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.613-618
    • /
    • 1999
  • L-Proline-producing mutant strains were developed by exposing L-glutamic acid-producing bacteria to N-metyl-N-nitro-nitrosoguanidine and UV irradiation. A L-histidine auxotroph of Corynebacterium acetoacidophilum RYU3161(KCTC 0616BP), which was resistant to sulfaguanidine and proline analogs (DHP, AZC, TAC), was isolated. The activity of the mutant strain's $\gamma$-glutamyl kinase was 45% higher than that of the parent strain. The optimum level of L-histidine for production of L-proline was 0.16 g/l. In a 5-1 jar fermenter, the mutant strain produced L-proline at a high concentration (35 g/l) level within 48 h of cultivation.

  • PDF

Succinic Acid Production by Continuous Fermentation Process Using Mannheimia succiniciproducens LPK7

  • Oh, In-Jae;Lee, Hye-Won;Park, Chul-Hwan;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.908-912
    • /
    • 2008
  • To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: ldhA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and $0.2\;h^{-1}$ dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

Optimal Milieu for Culturing Porcine Sertoli Cell

  • Jabed Md. Anower;Kamal Tania;Kim, Byung-Ki
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • The purpose of the present study was to establish culture conditions for the in vitro study of the neonatal piglet Sertoli cell. Isolation for the culture of Sertoli cell was established using collagenase and pancreatin digestion of testicular tissues. The effects of various culture media, fetal bovine serum(FBS), follicular stimulating hormone(FSH), epidermal growth factor(EGF) and insulin-transferrin-sodium selenite(ITS) on growth of neonatal piglet Sertoli cells were investigated. The mitogenic effects of Dulbecco's modified Eagle's medium+Ham's F-12 medium was higher than other media used in this experiment. The addition of 1% FBS in cultures was necessary for attachment of Sertoli cell clusters. However, except FBS and EGF, FSH and ITS did not stimulate Sertoli cell proliferation. When Sertoli cells isolated from neonatal piglets were cultured in Dulbecco's modified Eagle's medium+Ham's F-12 medium supplemented with 1% FBS, FSH EGF and ITS, the yield and plating efficiency of Sertoli cells were largely increased. Confluency of Sertoli cells was reached as early as 4 days of culture. The method described here reduces or eliminates many of the drawbacks of the conventional procedures used to isolate and culture of Sertoli cells, thus providing a useful tool in studies of growth kinetics and regulation of cell proliferation in vitro.

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation (점적관개에 따른 토양수분 재분배 균일성 평가)

  • Choi, Soon-Kun;Choi, Jin-Yong;Nam, Won-Ho;Hur, Seung-Oh;Kim, Hak-Jin;Chung, Sun-Ok;Han, Kyung-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

Validation of protein refolding via 1-dimensional 1H-15N heteronuclear single quantum correlation experiments

  • Kim, Boram;Choi, Joonhyeok;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.4
    • /
    • pp.104-107
    • /
    • 2019
  • Many proteins are expressed as an insoluble form during the production using Escherichia coli (E. coli) system. Although various methods are applied to increase their amounts of soluble expression, refolding is the only feasible way to obtain a target protein in some cases. Moreover, protein NMR experiments require 13C/15N-labeled proteins that can only be obtained from E. coli systems in terms of cost and technical difficulty. The finding of appropriate refolding conditions for a target protein is a time-consuming process. In particular, it is very difficult to determine whether the refolded protein has a native structure, when a target protein has no enzymatic activity and its refolding yield is very low. Here, we showed that 1-dimensional 1H-15N heteronuclear single quantum correlation (1D 1H-15N HSQC) experiment can be efficiently used to screen an optimal condition for the refolding of a target protein by monitoring both the structure and concentration of the refolded protein.

Cultural Characteristics by Sawdust and Liquid Spawn for the Cultivation of Neolentinus lepideus (잣버섯(Neolentinus lepideus) 재배를 위한 액체 및 톱밥종균의 배양특성)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol;Koo, Han-Mo
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.125-129
    • /
    • 2010
  • This study was carried out to elucidate suitable spawn culture for an artificial cultivation of Neolentinus lepideus. The optimum culture conditions of the liquid spawn were deffated soy flour for main material, 12 days for culture period and 0.9 vvm for aeration volume, respectively. Sawdust spawn was appropriate for douglas fir sawdust and deffated corn flour (95 : 5, v/v) for mycelia growth and fruiting body formation. In case of liquid spawn, cultivation period was two shorter than sawdust spawn and mushroom yield was 111.9 g per 850ml cultivation bottle. In conclusion, the suitable spawn for fruiting body production was found to be liquid spawn than sawdust spawn with considering cultivation period and mushroom productivity.

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

  • Vu, Nguyen Trung;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.204-217
    • /
    • 2020
  • In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

A Study on the Operation Condition for Carbon-Nitrogen Removal in Wastewater and Sludge Reduction using PVA-gel Immobilized Microorganism (PVA-gel 미생물 고정화 담체를 이용한 고도하수처리 및 슬러지 감량화 운전조건 연구)

  • Lee, Jin-Sook;Park, Hyung-Whan;Nam, Duk-Hyun;Park, Chul-Hwi;Jung, In-Ho;Yoo, Young-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.875-883
    • /
    • 2006
  • The carbon and nitrogen removal process using PVA-gel (Polyvinyl Alcohol) immobilized microorganisms was studied. The process has been operated under diverse process conditions for 12 months. The process consists of denitrification with internal recycle of 300%, nitrification, aerobic digestion reactors and settling tank. Nitrificatoin and nitrogen removal efficiency according to gel packing ratio and temperature were studied. Yield for Heterotrophs ($Y_H$), decay coefficient for Heterotrophs($b_H$) in aerobic digestion reactor were determined to seize sludge reduction mechanism and compared with typical data of activated sludge process. Then SRT in aerobic digestion reactor was determined on an experimental basis and sludge reduction efficiency was calculated. The process was implemented successfully with sludge reduction efficiency of 92.0~98.5% on a basis of biomass.