• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.026 seconds

Continuous Ethanol Production Using immobilized Baker's Yeast (고정화 효모를 이용한 연속적 에탄올 생산)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.398-404
    • /
    • 1991
  • - Ethanol production by calcium alginate-immobilized baker's yeast was studied in the continuous shaked-flask reactor (CSFR) using glucose medium as a feed. Immobilized cells were stable at 30~$37^{\circ}C$ and pH 4~8. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration employed were 50, 100 and 150 g/l, respectively. It was investigated that the influent glucose concentration and the dilution rate have an influence on the ethanol fermentation characteristics at steady state in continuous culture of immobilized baker's yeast. The optimum conditions for high ethanol productivity and low residual glucose output in ethanol prodution were shown to be 0.2 h ' for the dilution rate and 150 g/l for the influent glucose concentration. The maximum ethanol productivity, ethanol yield, specific growth rate and glucose conversion rate were around 7.12 g/$l\cdot h$, 0.23, 0.366 g/$l\cdot h$ and 78.43, respectively.

  • PDF

Effect of Precultural and Nutritional Parameters on Compactin Production by Solid-State Fermentation

  • Nikhil S., Shaligram;Singh, Sudheer Kumar;Singhal, Rekha S.;Szakacs, George;Pandey, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.690-697
    • /
    • 2009
  • In the present study, production of compactin by Penicillium brevicompactum WA 2315 was studied. In the first step, various precultural parameters were studied by substituting one factor at a time. Subsequently, the effect of maltodextrin DE 18 on compactin production was studied. The optimized parameters gave maximum compactin production of 850 ${\mu}g/gds$as compared with 678 ${\mu}g/gds$before optimization. Statistical study was performed to further improve the production and develop a robust model. An improved yield of 950 ${\mu}g/gds$was obtained using the conditions proposed by the experimental model. The present study emphasizes the importauce of precultural and nutritional parameters on the production of compactin, and further confirms the usefulness of solid-state fermentation for the production of industrially important secondary metabolites. It also confirms that complex nitrogen sources such as oil cakes can be used for the production of compactin.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Can cities become self-reliant in energy? A technological scenario analysis for Kampala, Uganda

  • Munu, Nicholas;Banadda, Noble
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.219-225
    • /
    • 2016
  • Energy self-reliance is important for economic growth and development for any nation. An energy self-reliance technological analysis for Kampala the capital city of Uganda is presented. Three renewable energy sources: Municipal Solid Waste (MSW), solar and wind are assessed for the period of 2014 to 2030. Annual MSW generation will increase from $6.2{\times}10^5$ tons in 2014 to $8.5{\times}10^5$ and $1.14{\times}10^6$ tons by 2030 at 2% and 3.9% population growth respectively. MSW energy recovery yield varies from 136.7 GWh (2014, 65% collection) to 387.9 GWh (2030, 100% collection). MSW can at best contribute 2.1% and 1.6% to total Kampala energy demands for 2014 and 2030 respectively. Wind contribution is 5.6% and 2.3% in those respective years. To meet Kampala energy demands through solar, 26.6% of Kampala area and 2.4 times her size is required for panel installation in 2014 and 2030 respectively. This study concludes that improving renewable energy production may not necessarily translate into energy self-reliant Kampala City based on current and predicted conditions on a business as usual energy utilization situation. More studies should be done to integrate improvement in renewable energy production with improvement in efficiency in energy utilization.

Pooling-Across-Environments Method for the Generation of Composite-Material Allowables (환경조건간 합동을 이용한 복합재료 허용치 생성 기법)

  • Rhee, Seung Yun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.63-69
    • /
    • 2016
  • The properties of composite materials, when compared to those of metallic materials, are highly variable due to many factors including the batch-to-batch variability of raw materials, the prepreg manufacturing process, material handling, part-fabrication techniques, ply-stacking sequences, environmental conditions, and test procedures. It is therefore necessary to apply reliable statistical-analysis techniques to obtain the design allowables of composite materials. A new composite-material qualification process has been developed by the Advanced General Aviation Transport Experiments (AGATE) consortium to yield the lamina-design allowables of composite materials according to standardized coupon-level tests and statistical techniques; moreover, the generated allowables database can be shared among multiple users without a repeating of the full qualification procedure by each user. In 2005, NASA established the National Center for Advanced Materials Performance (NCAMP) with the purpose of refining and enhancing the AGATE process to a self-sustaining level to serve the entire aerospace industry. In this paper, the statistical techniques and procedures for the generation of the allowables of aerospace composite materials will be discussed with a focus on the pooling-across-environments method.

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

Studies on Constituents and Culture of the Higher Fungi of Korea (한국산(韓國産) 고등균류(高等菌類)의 성분(成分)및 배양(培養)에 관한 연구(硏究))

  • Shim, Mi-Ja
    • The Korean Journal of Mycology
    • /
    • v.9 no.2
    • /
    • pp.49-66
    • /
    • 1981
  • The objectives of this investigation were to produce artificially an antitumor constituent by submerged culture of the mycelium of Coriolus versicolor (Fr.) Quel., to characterize the influence of various modifications of the nutrient and culture conditions with respect to the pro­duction, to determine chemical composition of the antitumor constituent, and to examine effects of the constituent on the immune response of mice. Submerged agitation of the mycelium in flasks containing a nutrient solution showed its adequate growth. Especially the mycelial growth in the medium containing glucose and yeast extract was abundant. The addition of cotton seed flour or ginseng waste to the medium increased the yield of mycelial growth and the production of the antitumor constituent. The replacement of glucose with starch also yielded the adequate growth. The antitumor constituent extracted from the mycelium and isolated from the culture filtrate was a protein-bound polysaccharide. The analyses of this constituent by GLC and amino acid autoanalysis showed that it contained four monosaccharides and fifteen amino acids. The protein-free polysaccharide of the constituent was also found to exert greater antitumor activity against sarcoma-180 in mice than the entire constituent. The antitumor constituent was found to potentiate the immune response of mice against sheep red blood cell. The protein-bound polysaccharide exerted more favorable influence on the immunity than the protein-free moiety.

  • PDF

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

DISSOLUTION AND BURNUP DETERMINATION OF IRRADIATED U-Zr ALLOY NUCLEAR FUEL BY CHEMICAL METHODS

  • Kim, Jung-Suk;Jeon, Young-Shin;Park, Soon-Dal;Song, Byung-Chul;Han, Sun-Ho;Kim, Jong-Goo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • Destructive methods were used for the burnup determination of U-Zr alloy nuclear fuel irradiated in the High-flux Advanced Neutron Application Reactor (HANARO) at KAERI. The dissolution rate of unirradiated U-Zr alloy fuel in $HNO_3$/HF mixtures was investigated for the experimental conditions of a different temperature, and initial concentrations of HF and $HNO_3$. The irradiated U-Zr alloy fuel specimen was dissolved in a mixed acid condition of 3 M HNO3 and 1 M HF at $90^{\circ}C$ for 8 hours under reflux. The total burnup was determined from measurement of the Nd isotope burnup monitors. The method includes U, Pu, $^{148}Nd,\;^P{145}Nd+^{146}Nd,\;^{144}Nd+^{143}Nd$ and total Nd isotopes determination by the isotope dilution mass spectrometric method (IDMS) using triple spikes $(^{233}U,\;^{242}Pu\;and\;^{150}Nd)$. The effective fission yield was calculated from the weighted fission yields averaged over the irradiation period. The results are compared with that obtained by the destructive -spectrometric measurement of the $^{137}Cs$ monitor.

Stable Fermentative Hydrogen Production by Polyvinyl Alcohol (Pva) Gel Beads Fluidized Bed Reactor

  • Nakao, Masaharu;Kawagoshi, Yasunori;Hino, Naoe;Iwasa, Tomonori;Furukawa, Kenji
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • A novel hydrogen fermentation technique by using polyvinyl alcohol (PVA) gel beads as a biomass carrier was investigated. The hydrogen gas was stably produced throughout the experimental period in a continuous reactor. Even though the hydrogen productivity was suddenly decrease by experimental troubles, the bacteria attached to the PVA gel beads played as an inoculum, it was promptly recovered. The hydrogen yield per glucose was not very high ($1.0-1.2mol-H_2/mol-glucose$), thus the optimization of the experimental conditions such as ORP and HRT should be considered to improve the hydrogen productivity. Bacterial community was stable during experimental period after the PVA gel beads applying, which indicated that applying of biomass carrier was specific to keep not only the biomass but also the bacteria commonly. Clostridium species were phylogenetically detected, which suggested that these bacteria contributed to the hydrogen production in the biofilm attached to the PVA gel beads.

  • PDF