• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.027 seconds

Production of an Acidic Polygalacturonase from Aspergillus kawachii by Solid State Fermentation and Their Application for Pectin Extraction

  • Martinez-Avila, Guillermo Cristian Guadalupe;Wicker, Louise;Aguilar, Cristobal Noe;Rodriguez-Herrera, Raul;Contreras-Esquivel, Juan Carlos
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.732-738
    • /
    • 2009
  • An acidic polygalacturonase (PG) from Aspergillus kawachii was produced by solid state fermentation employing a polyurethane foam support. The conditions used for the production of acidic PG were particle size of support (0.6 or 500 $mm^3$) and fermentation time. From the factors studied, the particle size had important influence on enzyme production. The best conditions for acidic PG production were $0.6\;mm^3$ particle size, 18 hr at $30^{\circ}C$ and initial pH of 5.0. In addition, pectin was extracted from citrus pomaces (grapefruit, lime, and tangerine) by acidic PG at $50^{\circ}C$ for 24 hr with citric acid solution. Infrared spectroscopy showed that lime pomace had more high-methoxylated (65%) endogenous pectin than was obtained than from grapefruit or tangerine pomaces. The enzymatically extracted pectin yield in dry basis (d.b.) for grapefruit and lime pectins were 6.95 and 4.25%, respectively. The citric acid solution alone also contributed to pectin extraction from citrus pomaces (7-9%, d.b.). Limited pectin extraction by acidic PG from tangerine pomace was most likely due to the presence of low-methoxylated endogenous pectin. The enzymatic method for pectin extraction using acidic PG from A. kawachii is a promising technique for releasing highly polymerized pectic substances from high-methoxylated lime or grapefruit pomaces.

A Modified Process for Producing High Quantities of Bio-Germanium in Yeast and a Study of Its Oral Toxicity

  • Park, So-Young;Joo, Seong-Soo;Won, Tae-Joon;Chung, Jin-Woong;Lee, Sung-Hee;Oh, Sun-Woo;Lee, Do-Ik;Hwang, Kwang-Woo
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.78-82
    • /
    • 2007
  • Since germanium has been shown to be beneficial for the treatment of diseases such as cancer and rheumatic arthritis, we developed an adapted process of bio-germanium preparation using inorganic germanium. In the present study we determined the optimal conditions for culturing yeast Saccharomyces cerevisiae (KCTC-1199), and the best concentrations of inorganic germanium for the adaptation process. The resulting method was successful at producing high quantities of germanium yeasts. The following are the culture conditions that obtained the highest level of productivity: an inorganic germanium concentration of 3,000-5,000 ppm, a pH of 6.5, a temperature of $35^{\circ}C$, and 20 hr of incubation time. In addition to this high-yield quantity study, we observed the acute oral toxicity of mice treated with Geranti Bio-Ge $Yeast^{(R)}$. We found no changes in body weight, or in the mortality between the control groups and the bio-germanium yeast group. There were also no digestive problems such as diarrhea that occurred in either group.

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

The studies about cutting, processing and decokting methods of oriental medicinal plants II : Rehmanniae Radix Preparata (한약재의 절단, 수치, 전탕법에 관한 연구II : 숙지황)

  • Kim, In-Rak;Hwang, Keum-Hee;Joo, Hea-Jung;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.4 no.1 s.4
    • /
    • pp.115-127
    • /
    • 1998
  • To improve the quality control of frequently used oriental medicinal plants, the storage, cutting, processing and decokting methods of Rehmannia glutinosa Libosch. var. purpurea Makino(熟地黃) were examined. The contents of 5-hydroxymethyl-2- furaldehyde(5-HMF) of Rehmannia glutinosa Libosch. var. purpurea Makino were analysed by HPLC at various conditions as the standard component. Raw materials were classified into 3 groups with their specific gravity(天 地 人黃) and determined the ding weights and the contents of water, the solid component of Ji-Hwang(地黃) was the most. Rehmannia glutinosa Libosch. var purpurea Makino was steamed and dried nine times and analysed the content of 5-HMF on every time. In the case of Ji-Hwang, the standard component of the ninth sample was produced the most. But which of the tenth samples of Chun-Hwang and Yin-Hwang(天黃 人黃) were the most. The best decokting conditions which were determined by the yield of 5-HMF were as follows : non cutting, soaking time was 0 minutes, decokting time was 75 minutes after boiling. The contents of sugar on each of samples were determined. The contents of standard component increased by steaming number and the contents of sugar decreased.

  • PDF

Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract - an Agro-Industry Waste

  • Rani, Mahadevaswamy Usha;Rastogi, Navin K.;Anu Appaiah, K.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.739-745
    • /
    • 2011
  • During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5-8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5-2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe)

  • Ok, Seon;Jeong, Woo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.166-171
    • /
    • 2012
  • 6-Shogaol, a dehydrated form of 6-gingerol, is a minor component in ginger (Zingiber officinale Roscoe) and has recently been reported to have more potent bioactivity than 6-gingerol. Based on the thermal instability of gingerols (their dehydration to corresponding shogaols at high temperature), we aimed to develop an optimal process to maximize the 6-shogaol content during ginger extraction by modulating temperature and pH. Fresh gingers were dried under various conditions: freeze-, room temperature (RT)- or convection oven-drying at 60 or $80^{\circ}C$, and extracted by 95% ethanol at RT, 60 or $80^{\circ}C$. The content of 6-shogaol was augmented by increasing both drying and extraction temperatures. The highest production of 6-shogaol was achieved at $80^{\circ}C$ extraction after drying at the same temperature and the content of 6-shogaol was about 7-fold compared to the lowest producing process by freezing and extraction at RT. Adjustment of pH (pH 1, 4, 7 and 10) for the 6-shogaol-richest extract (dried and extracted both at $80^{\circ}C$) also affected the chemical composition of ginger and the yield of 6-shogaol was maximized at the most acidic condition of pH 1. Taken together, the current study shows for the first time that a maximized production of 6-shogaol can be achieved during practical drying and extraction process of ginger by increasing both drying and extracting temperatures. Adjustment of pH to extraction solvent with strong acid also helps increase the production of 6-shogaol. Our data could be usefully employed in the fields of food processing as well as nutraceutical industry.

Transfer of Arsenic and Heavy Metals from Soils to Rice Plant under Different Drainage Conditions (논토양 배수조건에 따른 비소 및 중금속의 용출 및 벼 전이특성)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.12-21
    • /
    • 2017
  • A pot experiment was conducted to investigate the transfer of As and cationic heavy metals (Fe, Mn, Zn, Cd and Pb) from soil to rice plant in soil condition with submerged and drained. During the ninety-day monitoring period for soil solution, solubility of reducible elements such as As, Fe and Mn in submerged condition were higher than that of Zn. On the contrary, concentration of Zn in drained condition was higher than that of reducible elements. The concentration of As, Cd, Pb and Zn in rice plant (root, stem, leaf and grain) showed similar pattern with soil solution. The As concentration in each part of rice plant, which cultivated in drained condition, measured 56%~94% lower than those in submerged condition. However, the contents of cationic heavy metals (Cd, Pb and Zn) were represented the opposite result with As. These results are due to mobility of As and cationic heavy metals under different soil drainage conditions which represent oxidation and reduction. Thus soil drainage control can be used as acceptable passive treatment methods to reduce transfer of inorganic contaminants from soil to rice plant. However more detailed examination on soil condition conversion is needed, because yield of rice was decreased when it cultivated in drained condition only. It also needed when soil is contaminated by As and cationic heavy metal because single drainage condition cannot reduce transfer of both kinds of contaminants all.

Evaluation of F$_1$ Hybrids Between RD$_1$ and Bivoltine Breeds of the Silkworm (Bombyx mori L.) for Exploitation in Dry Zones

  • Singh, Ravindra;Rao, D.Raghavendra;Baro, Pranakrishna;Choudhary, Nazia;Gangopadhyay, Debnirmalya;Kariappa, B.K.;Dandin, S.B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • With the main objective to know the feasibility of exploitation of F$_1$ hybrids in semi arid and arid climatic conditions of India, the present study was carried out by utilising RD$_1$ as female parent and six bivoltine silkworm breeds viz., CSR$_2$, CSR$_4$, CSR$_{5}$, CSR$_{17}$, CSR$_{18}$ and CSR$_{19}$ along with NB$_4$D$_2$ as male parents. Different hybrids exhibited their superiority for various economic characters during different seasons. Among F$_1$ hybrids, RD$_1$${\times}$CSR$_{5}$ was adjudicated as the best hybrid in terms of expression of significant positive hybrid vigour over mid parental value for five economic characters namely hatching %, cocoon yield, cocoon weight, cocoon shell weight and filament size, highest multiple trait average evaluation index value of 56.77 and comparatively uniform cocoon size with coefficient of variation (CV%) of 3.80 and Standard Deviation (SD) of 7.99 during September - October 2003. Results of the present study revealed that the F$_1$ hybrid RD$_1$${\times}$CSR$_{5}$ can be successfully exploited on commercial in semi arid and arid climatic conditions in India. India.dia.

Difluoromethane Synthesis over Fluorinated Metal Oxide (불화된 금속산화물 촉매상에서 이불화메탄의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1998
  • The influences of reaction temperature, HF/DCM mole ratio, contact time and catalyst type on activity and selectivity of difluoromethane synthesis via hydrofluoriation of dichloromethane over fluorinated catalyst have been studied. It has been found that fluorinated $Cr/Al_2O_3$ catalysts, show better performance compared to pure fluorinated $Al_2O_3$ catalyst and then, non-treated catalysts demonstrate better than catalysts pretreated with hydrogen and air. The results show that the optimum reaction conditions are found as follows : reaction temperature at $340^{\circ}C$, mole ratio of HF/DCM 5 or above and contact time 20 sec. or above. With these conditions the maximum attainable yield of difluoromethane has been found to be greater than 80%. In particular, the activity and the selectivity of difluoromethane do not change with the reaction time on stream up to 8 hours.

  • PDF

Synthesis and Characteristic of ${\epsilon}$-type Copper Phthalocyanine Used as Color Filter in LCD Panel (입실론 프탈로시아닌의 합성 및 특성에 대한 연구)

  • Kim, Jae Hwan;Kim, Song Hyuk;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.138-142
    • /
    • 2012
  • The ${\epsilon}$ type copper phthalocyanine (${\epsilon}$-CuPc), called as a pigment blue 15 : 6, is a significant material to produce a blue pixel in LCD (Liquid Crystal Display) panel. In this study, ${\epsilon}$-CuPc sample was synthesized at various reaction conditions by applying the seed method using ${\epsilon}$-CuPc nanoparticles as a seed. Adequate synthetic conditions of the samples were selected by analyzing and comparing crystalline structure, crystalline purity, microstructure, and synthetic yield of the samples with ${\alpha}$ and ${\beta}$ crystalline CuPc samples. The chemical and crystalline structure of the samples were tested using FT-IR spectrometer and X-ray diffractometry, respectively. The shape of the particle was examined using field emission scanning electiron microscope while the thermal property was tested utilizing thermogravimetric analysis.