• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.207 seconds

Effect of Korean Red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology

  • Lee, Jin Woo;Mo, Eun Jin;Choi, Ji Eun;Jo, Yang Hee;Jang, Hari;Jeong, Ji Yeon;Jin, Qinghao;Chung, Hee Nam;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: Extraction conditions greatly affect composition, as well as biological activity. Therefore, optimization is essential for maximum efficacy. Methods: Korean Red Ginseng (KRG) was extracted under different conditions and antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content evaluated. Optimized extraction conditions were suggested using response surface methodology for maximum antioxidant activity and extraction yield. Results: Analysis of KRG extraction conditions using response surface methodology showed a good fit of experimental data as demonstrated by regression analysis. Among extraction factors, such as extraction solvent and extraction time and temperature, ethanol concentration greatly affected antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content. The optimal conditions for maximum antioxidant activity and extraction yield were an ethanol concentration of 48.8%, an extraction time 73.3 min, and an extraction temperature of $90^{\circ}C$. The antioxidant activity and extraction yield under optimal conditions were 43.7% and 23.2% of dried KRG, respectively. Conclusion: Ethanol concentration is an important extraction factor for KRG antioxidant activity and extraction yield. Optimized extraction conditions provide useful economic advantages in KRG development for functional products.

Simulating Crop Yield and Probable Damage From Abnormal Weather Conditions (이상기후에 따른 농작물의 수확량 및 재해발생 확률의 추정)

  • 임상준;박승우;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.31-40
    • /
    • 1997
  • Potential impacts for unfavourable weather conditions and the assessment of the magnitudes of their adverse effects on crop yields were studied. EPIC model was investigated for its capability on crop yield predictions for rice and soybean. Weather generationmodel was used to generate long-term climatic data. The model was verified with ohserved climate data of Suwon city. Fifty years weather data including abnormal conditions were generated and used for crop yield simulation by EPIC model. Crop yield probability function was derived from simulated crop yield data, which followed normal distribution. Probable crop yield reductions due to abnormal weather conditions were also analyzed.

  • PDF

Optimal Synthesis Conditions of Barium Sulfate (황산바륨의 최적합성조건)

  • 신화우;최광식
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.364-368
    • /
    • 2002
  • Optimal synthetic conditions of barium sulfate were investigated from the viewpoint of yield and bulkiness according to a randomized complete block design proposed by Box and Wilson. Barium chloride and Sodium sulfate were utilized as reactants in order to prepare barium sulfate in this study. The optimum Synthesis conditions of barium sulfate obtained from this study are as follows; Reactant temperature; 60~75$^{\circ}C$ (viewpoint of yield) and 60~71$^{\circ}C$ (viewpoint of bulkiness). Concentration of two reactants; 12.7~14.4% (viewpoint of yield) and 5~10.5% (viewpoint of bulkiness). Mole ratio of two reactants, [BaCl$_2$]/[Na$_2$SO$_4$]; 1.62~1.96 (viewpoint of yield) and 2.0 (viewpoint of bulkiness). Reacting time; 13~15 minutes (viewpoint of yield) and 12~14 minutes (viewpoint of bulkiness). Drying temperature of product; 86~10$0^{\circ}C$ (viewpoint of yield) and 6$0^{\circ}C$ (viewpoint of bulkiness).

A Meta-Analysis for the Impact of Transgenic Crop Adoption on Corn and Soybean Yield

  • Lee, Sang-Hoon;Lee, Gyeong-Bo;Hwang, Seon-Woong;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.614-621
    • /
    • 2012
  • Although there is a broad dispute over genetically modified foods on safety, the worldwide adoption of transgenic crops is rapidly increasing. The objectives of this study were to identify trends in the effects of transgenic on crop yields and examine the effect of agricultural variables including crop type, biotech trait, tillage system, and yield environment on corn and soybean yield. A meta-analysis from the 34 peer-reviewed scientific literatures was conducted to compare the crop yield between transgenic crops and conventional varieties. Results showed that the yield of transgenic corn and soybean was strongly dependent on growing conditions. Transgenic hybrids had higher yield potential in the low crop yield environments such as high weeds and/or insect infestation, low soil water, and cool temperature conditions, while transgenic crops did not have yield advantages in high yield environments. The results from this study suggest that producers should consider the potential yield environmental conditions and possible yield reductions when producers choose crop hybrids in their fields.

Difference in Growth, Yield and Isoflavone Content among Soybean Cultivars under Drained Paddy Field Condition

  • Chon, Sang-Uk;Kim, Dong-Kwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.48-52
    • /
    • 2006
  • Naturally occurring soybean isoflavones are known to be influenced by various genetic and environmental conditions. Growth, yield, and isoflavone content were determined in four different cultivars of soybean grown under drained paddy and upland fields. Most of growth characteristics and yield components of four different soybean cultivars harvested in drained paddy field were greater than those in upland field, regardless of cultivar. By means of high performance liquid chromatography, total daidzein and genistein contents of soybean in drained paddy field were increased up to 40 and 35%, respectively, compared with those in drained paddy field. Besides isoflavone contents, the growth and yield of soybean were significantly affected by cultivar and field conditions, indicating the necessity of genetic program for soybean cultivars appropriate to drained paddy field conditions. In conclusion, converting paddy field into upland may effectively improve soybean cropping system, especially in terms of isoflavone increment under paddy field conditions.

Variable Density Yield Model for Irrigated Plantations of Dalbergia sissoo Grown Under Hot Arid Conditions in India

  • Tewari, Vindhya Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • Yield tables are a frequently used data base for regional timber resource forecasting. A normal yield table is based on two independent variables, age and site (species constant), and applies to fully stocked (or normal) stands while empirical yield tables are based on average rather than fully stocked stands. Normal and empirical yield tables essentially have many limitations. The limitations of normal and empirical yield tables led to the development of variable density yield tables. Mathematical models for estimating timber yields are usually developed by fitting a suitable equation to observed data. The model is then used to predict yields for conditions resembling those of the original data set. It may be accurate for the specific conditions, but of unproven accuracy or even entirely useless in other circumstances. Thus, these models tend to be specific rather than general and require validation before applying to other areas. Dalbergia sissoo forms a major portion of irrigated plantations in the hot desert of India and is an important timber tree species where stem wood is primarily used as timber. Variable density yield model is not available for this species which is very crucial in long-term planning for managing the plantations on a sustained basis. Thus, the objective of this study was to develop variable density yield model based on the data collected from 30 sample plots of D. sissoo laid out in IGNP area of Rajasthan State (India) and measured annually for 5 years. The best approximating model was selected based on the fit statistics among the models tested in the study. The model develop was evaluated based on quantitative and qualitative statistical criteria which showed that the model is statistically sound in prediction. The model can be safely applied on D. sissooo plantations in the study area or areas having similar conditions.

Response of Rice Yield to Nitrogen Application Rate under Variable Soil Conditions

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • ice yield and plant growth response to nitrogen (N) fertilizer may vary within a field, probably due to spatially variable soil conditions. An experiment designed for studying the response of rice yield to different rates of N in combination with variable soil conditions was carried out at a field where spatial variation in soil properties, plant growth, and yield across the field was documented from our previous studies for two years. The field with area of 6,600 m2 was divided into six strips running east-west so that variable soil conditions could be included in each strip. Each strip was subjected to different N application level (six levels from 0 to 165kg/ha), and schematically divided into 12 grids $(10m \times10m\;for\;each\;grid)$ for sampling and measurement of plant growth and rice grain yield. Most of plant growth parameters and rice yield showed high variations even at the same N fertilizer level due to the spatially variable soil condition. However, the maximum plant growth and yield response to N fertilizer rate that was analyzed using boundary line analysis followed the Mitcherlich equation (negative exponential function), approaching a maximum value with increasing N fertilizer rate. Assuming the obtainable maximum rice yield is constrained by a limiting soil property, the following model to predict rice grain yield was obtained: $Y=10765{1-0.4704^*EXP(-0.0117^*FN)}^*MIN(I-{clay},\;I_{om},\;I_{cec},\;I_{TN},\; I_{Si})$ where FN is N fertilizer rate (kg/ha), I is index for subscripted soil properties, and MIN is an operator for selecting the minimum value. The observed and predicted yield was well fitted to 1:1 line (Y=X) with determination coefficient of 0.564. As this result was obtained in a very limited condition and did not explain the yield variability so high, this result may not be applied to practical N management. However, this approach has potential for quantifying the grain yield response to N fertilizer rate under variable soil conditions and formulating the site-specific N prescription for the management of spatial yield variability in a field if sufficient data set is acquired for boundary line analysis.

Effect of Pre-shearing and Temperature on the Yield Stress of Stirred Yogurt

  • Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.70-73
    • /
    • 2009
  • The yield stress of stirred yogurt was measured by the vane viscometer at different pre-shearing conditions, such as pre-shear speed, pre-shear time, and wait time, and temperature (12-38${^{\circ}C}$). The yield stress ranged from ~17.6 to 10 Pa and from 34.2 to 11.9 Pa, depending on the pre-shearing conditions and temperature, respectively. The preshear speed and the wait time significantly affected the yield stress. The temperature dependence of the yield stress was described by the Eyring's kinetic model. The linear function of the temperature on the yield stress was limited at the 22${^{\circ}C}$, and at the above 22${^{\circ}C}$, the yield stress was maintained to be a constant (~12.5 Pa).

Synthesis of 4,5-Diphenyl Imidazolone and Studies on its Fluorescent Effect (4,5-Diphenyl-Imidazolone의 合成 及 螢光效果에 關한 硏究)

  • Jeon, Poong-Jin;Kim, Hyung-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.70-77
    • /
    • 1957
  • 4,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 904,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 704,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}C$. . Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85%. Reaction temperature 150∼110$^{\circ}C$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}C$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes. . and dye-time 15 minutes. . and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes.

  • PDF

Line${\times}$Tester Analysis of Certain Quantitative Traits in Silkworm Bombyx mori L. under Optimum and Stress Rearing Conditions

  • Rao, P.Sudhakara;Datta, R.K.;Kumari, K.M.Vijaya;Palit, A.K.;Bhat, S.A.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.107-112
    • /
    • 2004
  • The combining abilities in the 5 newly evolved thermo tolerant breeds viz., SR6, SR7, SR8 SR9 and SR10 of silkworm Bombyx mori L. and their 15 hybrids were made in a line${\times}$tester crossing programme. Data were analysed for seven quantitative traits i.e., pupation rate, cocoon yield, cocoon weight, cocoon shell weight, cocoon shell ratio, filament length and raw silk percentage under optimum room temperature $(25{\pm}{1^{\circ}C})$ conditions (In case of high temperature $(36{\pm}{1^{\circ}C})$ stress conditions five economic traits except filament length and raw silk percentage) with 3 widely adapted testers i.e., KA, CSR2 and CC1 as lines (females) and testers (males) respectively. The performance at high temperature and low humidity conditions aye only taken into consideration for selecting the best lines/hybrids. Among the lines SR6 exhibited positive General combining ability (GCA) effects for pupation rate, cocoon yield, cocoon weight and cocoon shell ratio traits, followed by SR7 for pupation rate, cocoon yield and cocoon shell weight and cocoon shell ratio. Among testers, KA exhibited positive GCA effects for two quantitative traits cocoon yield, cocoon weight and CSR2 for cocoon shell weight and cocoon shell ratio under adverse temperature conditions. The hybrid SR6${\times}$CC1 and SR7${\times}$CSR2 exhibited significant positive Specific combining ability (SCA) effects for majority of the traits in high temperature stress conditions of rearing. The better parent value of heterosis(Heterobeltiosis) was exhibited by the hybrid SR6${\times}$CC1 for pupation rate, cocoon yield, cocoon weight and cocoon shell weight and SR7${\times}$CSR2 for all the trails evaluated under high temperature conditions. Based on the results, the lines SR6 and SR7 was judged as best combiners and the hybrids SR6${\times}$CC1 and SR7${\times}$CSR2 can be selected for commercial exploitation in tropical climate.