• Title/Summary/Keyword: yield

Search Result 22,193, Processing Time 0.049 seconds

THE EFFECTS OF BARIUM SULFATE AND IODIDE COMPOUND ON THE CHARACTERISTICS OF DENTAL ACRYLIC RESINS (치과용 아크릴릭 레진의 방사선 불투과도에 관한 연구 - 황산바륨과 요오드 화합물 첨가 -)

  • Lee Yong-Keun;Lee Keon-Il;Jung Sung-Woo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • Aspirating or swallowing foreign bodies is a common occurrence. If they are wholly or partly radiopaque, their localization in and progress through the gastrointestinal tract can be more effective. Of the dental origin foreign materials swallowed, the most common things are fragments of anterior maxillary partial denture. But the radiopacity of denture base resins is not sufficient to determine the location of the objects. The purpose of this study was to develop a radiopaque dental acrylic resin, which has clinically detectible radiopacity with minimal change of mechanical properties and color. The radiopacity, color change(CIE 6..E) and microhardness of acrylic resins were determined after mixing barium sulfate or iodide compound. Thermocycling course was conducted to determine the change of characteristic of resins after using for a long time in the mouth. Five or ten percent of barium sulfate to total weight of cured material was mixed with heat curing dental acrylic resin or chemically curing orthodontic resin. In the case of iodide compound, the mixing ratio was two or three percent. After mixing the high radiopaque materials, resin was cured to 20×20×2 mm plate, polished with #600 sand paper and finally polished with Microcloth(Buehler). The specimens were thermocycled in 5 and 55 t distilled water for 2,000 times, and the measurement of radiopacity, color and Vickers hardness was repeated every 500 times thcrmocycling. The radiopacity of specimens on the X -ray films was measured with densitometer(X-rite). The color change was detennined with differential colorimeter(Model TC-6FX, Tokyo Denshoku), and the Vickers hardness number was measured with microhardness tester(Mitsuzawa). The following results were obtained : 1. All the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, had combined effect on the radiopacity of the dental acrylic resins(p<0.0l). 2. The two variables, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of the dental acrylic resins(p<0.01). But the kinds of acrylic resins did not influence on the color change of mixed dental acrylic resins(p>0.05). 3. Each of the three variables, the kinds of acrylic resins, the mixing or the kinds of high radiopaque materials and thermocycling, influenced on the radiopacity of dental acrylic resins(p<0.0l). 4. The high radiopaque materials used in this study did not yield clinically usable radiopacity, and the color change was great after mixing those materials.

  • PDF

A Method of Inspecting ITO Pattern and Node Using Measured Data of Each Node's Mutual Capacitance ITO Sensor (상호 유도 정전하 방식 ITO 센서의 노드별 측정 데이터를 이용한 ITO패턴과 노드 검사 방법)

  • Han, Joo-Dong;Moon, Byoung-Joon;Choi, Kyung-Jin;Kim, Dong-Han
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.230-238
    • /
    • 2014
  • In this paper, we propose the possible way of accurate analysis and examination of ITO sensor to discriminate whether mutual capacitance ITO sensor is defective by using mutual capacitance of data in each node which consists of electrodes inside of ITO sensor. We have analyzed the structure characteristic of mutual capacitance ITO sensor which is used as an input device for not only small size electronics like mobile phone and tablets but also big size electronics and designed the circuit to inspect ITO sensor using touch screen panel IC. Set a variable related with mutual capacitance of charge and discharge and Implement to find and analyze accurate position when defect is made through the data from each node of ITO sensor. First, we can set a yield effective range through the first experiment data of mutual capacitance ITO sensor and by using the data of each node of ITO sensor which is the result from the second experiment, we can verify accuracy and effectiveness of effective range from the first experiment as a sample which is used in this experiment.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Morphological Characteristics and Physiological Effects of Mulberry Leaves and Fruits with Wild Varieties (횡성군 일대에서 채취한 야생뽕의 형태학적 특성 및 오디의 효능)

  • 김현복;박광준;석영식;김선림;성규병;남학우;문재유
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • We conducted this study to investigate the morphological characteristics and physiological effects of mulberry leaves and fruits with wild varieties. Morphologically sampling materials were showed Morus bombycis type and Morus alba type characteristics. Water contents of mulberry fruits were higher than that of mulberry leaves. Sugar degree of sampling materials was 5.1∼22.7 Brix %. The yield of 85% MeOH extract from freezing dried Mulberry Fruits was 60.2% and Hexane, BuOH and H$_2$O fraction from MeOH extract were 2.8%, 4.6%, 92.3% respectively. In the cholesterol-induced hyperlipidemia rats administered with subfraction of mulberry fruit extract, total cholesterol and serum triglyceride were decreased in the MeOH extract group and H$_2$O soluble fraction group. Also H$_2$O soluble fraction group decreased GPT, GOT and LDH level. Therefore, the above results suggested that mulberry fruit with wild varieties can help to maintain normal liver functions and to protect hyperlipidemia.

Water Requirement of Maize According to Growth Stage (노지재배 옥수수의 생육시기별 물 요구량 구명)

  • Eom, Ki-Cheol;Park, So-Hyun;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.16-22
    • /
    • 2013
  • Water is the most important resource for the maximum water use efficiency and yield of maize. Water has to be applied moderately based on the water requirement of maize. Crop water requirement (WR) is a function of the potential evapo-transpiration (PET) and crop coefficient (Kc). PET can be estimated by the climate data measured at the weather station in the production region. Kc was measured by the NIAST (RDA) through lysimeter experiments. In this study, the growth stage of maize was divided into five ones (G-1: Apr. 25 ~ May 20, G-2: May 21 ~ Jun. 20, G-3: Jun. 21 ~ Jul. 20, G4: Jul. 11 ~ Jul. 25, G5: Jul. 26 ~ Aug. 20). The average PET during maize growing season of the 45 areas was 2.85 mm $day^{-1}$. The highest water requirement was at the G-3 stage among the maize growth stages. The mean water requirement (MWR) according to growth stage was 1.74 ~ 2.42 (average 2.02), 2.99 ~ 4.21 (average 3.41), 3.82 ~ 5.25 (average 4.41), 3.05 ~ 4.31 (average 3.48), and 2.62 ~ 3.49 (average 3.01) mm $day^{-1}$ in the G-1, G-2, G-3, G-4 and G-5 stage, respectively. The total water requirement (TWR) according to growth stage was 45.37 ~ 63.04 (average 52.56), 92.54 ~ 130.59 (average 105.77), 76.46 ~ 105.09 (average 88.14), 45.73 ~ 64.67 (average 52.20), and 68.25 ~ 90.75 (average 78.33) mm in the G-1, G-2, G-3, G-4 and G-5 stage, respectively.

Changes in Physical and Chemical Properties of Coir Used as the Bag Culture Substrate of Greenhouse Tomatoes for Three Years

  • Song, Seung-Geun;Lee, Kyo-seok;Lee, Dong-Sung;Rhie, Ja-Hyun;Hong, Byeong-Deok;Bae, Hui-Su;Seo, Il-Hwan;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.503-509
    • /
    • 2016
  • To identify causes for drastic decrease in yield of tomato with repeated culturing number of the bag culture substrate of greenhouse tomatoes we investigated the physical and chemical properties of a coir used as the bag culture substrate to grow tomato at the Booyeo tomato experimental institute located in Booyeo, Chungnam Province for three years from 2012 to 2014. The results showed that total porosity ranged from 65.4 to 73.1% for the bulk densities of coir ranging from 0.12 to $0.14g\;cm^{-3}$. The volumetric water contents measured at 0.01 bar as air entry point were 25% (before), 33% ($1^{st}yr$), 45% ($2^{nd}yr$), and 37% ($3^{rd}yr$). Organic matter contents ranged from 82.0 to 96.2% (highest in $1^{st}yr$). pH and EC ranged from 4.47 to 6.47 (highest in $2^{nd}yr$), and from 22.2 to $53.5dS\;m^{-1}$ (highest in $1^{st}yr$) and cation exchange capacity ranged from 71.0 to $191.7cmol\;kg^{-1}$ (highest in $3^{rd}yr$). The surface structure observed with electrical microscope showed that the number of large pores decreased with increasing cultivating time while the proportion of smaller pores increased, indicating that the coir was consistently decomposed. Therefore, we could conclude that these changes of all physical and chemical properties of the coir may influence the holding capacities of water and nutrients, resulting in deterioration of quality of culture substrate of greenhouse tomatoes.

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.

Photocatalysis of Sub-ppm-level Isopropyl Alcohol by Plug-flow Reactor Coated with Nonmetal Elements Irradiated with Visible Light

  • Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.419-425
    • /
    • 2012
  • This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow reactor irradiated by 8-W daylight lamp or visible light-emitting-diodes (LEDs). In addition, the generation yield of acetone during photocatalytic processes for IPA at sub-ppm levels was examined. The surface characteristics of prepared S- and N-$TiO_2$ photocatalysts were analyzed to indicate that they could be effectively activated by visible-light irradiation. Regarding both types of photocatalysts, the cleaning efficiency of IPA increased as the air flow rate (AFR) was decreased. The average cleaning efficiency determined via the S-$TiO_2$ system for the AFR of 2.0 L $min^{-1}$ was 39%, whereas it was close to 100% for the AFR of 0.1 L $min^{-1}$. Regarding the N-$TiO_2$ system, the average cleaning efficiency for the AFR of 2.0 L $min^{-1}$ was above 90%, whereas it was still close to 100% for the AFR of 0.1 L $min^{-1}$. In contrast to the cleaning efficiencies of IPA, both types of photocatalysts revealed a decreasing trend in the generation yields of acetone with decreasing the AFR. Consequently, the N-$TiO_2$ system was preferred for cleaning of sub-ppm IPA to S-$TiO_2$ system and should be operated under low AFR conditions to minimize the acetone generation. In addition, 8-W daylight lamp exhibited higher cleaning efficiency of IPA than for visible LEDs.

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride (고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구)

  • Park, Yong Beom;Choi, Jae Hyung;Lim, Han-Kwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.