• Title/Summary/Keyword: yeast expression

Search Result 526, Processing Time 0.026 seconds

Expression of the FLP recombinase of the 2 $\mu$m plasmid of yeast in the cultured cells of Bombyx mori using a transient expression vector (Yeast 2 $\mu$m 플라스미드 유래 FLP recombinase 유전자의 곤충 배양세포내 발현)

  • 강석우;윤은영
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 1997
  • In order to express the FLP recombinase in B. mori cultured cell line, BmN-4, transient expression system using a heat shock protein gene (hsp70) promoter of Dorosophilla melnogaster was constructed. This vector was designated as pHsSV. Activity strength of the hsp70 promoter was compared with that of immediate early gene (IE-1) and polyhedrin gene of BmNPV employing the E. coli $\beta$-galactosidase gene as a reporter gene. The result showed that the pHs $\beta$-gal plasmid vector expressed the $\beta$-galactosidase at 2nd and 3rd day after the transfer of plasmid DNA into BmN-4 cells, which was similar to that of pIE1 $\beta$-gal vector, but different from that of a recombinant virus, vBm $\beta$-gal. For the construction of FLP recombinase transient expression vector, the FLP recombinase gene was cloned by polymerase chain reaction technique. To express the FLP recombinase, this gene was inserted into pHsSV plasmid vector, under the control of the hsp70 promotor, and tranfected in BmN-4 cells. The expressed FLP recombinase was estimated at 44kDa on a 12.5% SDS-PAGE.

  • PDF

Direct Evaluation of the Effect of Gene Dosage on Secretion of Protein from Yeast Pichia pastoris by Expressing EGFP

  • Liu, Hailong;Qin, Yufeng;Huang, Yuankai;Chen, Yaosheng;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2014
  • Increasing the gene copy number has been commonly used to enhance the protein expression level in the yeast Pichia pastoris. However, this method has been shown to be effective up to a certain gene copy number, and a further increase of gene dosage can result in a decrease of expression level. Evidences indicate the gene dosage effect is product-dependent, which needs to be determined when expressing a new protein. Here, we describe a direct detection of the gene dosage effect on protein secretion through expressing the enhanced green fluorescent protein (EGFP) gene under the direction of the ${\alpha}$-factor preprosequence in a panel of yeast clones carrying increasing copies of the EGFP gene (from one to six copies). Directly examined under fluorescence microscopy, we found relatively lower levels of EGFP were secreted into the culture medium at one copy and two copies, substantial improvement of secretion appeared at three copies, plateau happened at four and five copies, and an apparent decrease of secretion happened at six copies. The secretion of EGFP being limiting at four and five copies was due to abundant intracellular accumulation of proteins, observed from the fluorescence image of yeast and confirmed by western blotting, which significantly activated the unfolded protein response indicated by the up-regulation of the BiP (the KAR2 gene product) and the protein disulfide isomerase. This study implies that tagging a reporter like GFP to a specific protein would facilitate a direct and rapid determination of the optimal gene copy number for high-yield expression.

Class A and class B MADS box genes fro rice flower development

  • An, Gyn-Heung;Moo,Yong-Hwan;Jeon, Jong-Seong;Kang, Hong-Gyu;Sung, Soon-Kee
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.21-35
    • /
    • 1999
  • We have previously isolated OsMADS4 gene that is a member of the class B MADS box genes from rice. In this study, another member of the class B MADS box genes was isolated from rice flower by the yeast two-hybrid screening method using OsMADS4 as bait. RNA blot analyses revealed that the clone, OsMADS16, was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar with those of AP3 and PI, the class B genes of Arabidopsis, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. We have also isolated OsMADS6 gene using OsMADS1 as a probe. Both are members of the AGL2 MADS family. Various MADS genes that encode for protein-protein interaction partners of the OsMADS6 protein were isolated by the yeast two-hybrid screening method. A majority of these genes belong to the AGL2 family. Sequence Homology, expression pattern, and ectopic expression phenotypes indicated that one of the interaction partners, OsMADS14, appears to be homologous to API, the class A MADS gene of Arabidopsis.

  • PDF

Computational analysis of large-scale genome expression data

  • Zhang, Michael
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.41-44
    • /
    • 2000
  • With the advent of DNA microarray and "chip" technologies, gene expression in an organism can be monitored on a genomic scale, allowing the transcription levels of many genes to be measured simultaneously. Functional interpretation of massive expression data and linking such data to DNA sequences have become the new challenges to bioinformatics. I will us yeast cell cycle expression data analysis as an example to demonstrate how special database and computational methods may be used for extracting functional information, I will also briefly describe a novel clustering algorithm which has been applied to the cell cycle data.

  • PDF

A Study on the Gen Expression Data Analysis Using Fuzzy Clustering

  • Choi, Hang-Suk;Cha, Kyung-Joon;Park, Hong-Goo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.25-29
    • /
    • 2005
  • Microarry 기술의 발전은 유전자의 기능과 상호 관련성 그리고 특성을 파악 가능하게 하였으며, 이를 위한 다양한 분석 기법들이 소개되고 있다. 본 연구에서 소개하는 fuzzy clustering 기법은 genome 영역의 expression 분석에 가장 널리 사용되는 기법중 비지도학습(unsupervized) 분석 기법이다. Fuzzy clustering 기법을 효모(yeast) expression 데이터를 이용하여 분류하여 hard k-means와 비교 하였다.

  • PDF

Effects of Sucrose on Invertase Expression in Recombinant Saccharornyces cerevisiae (재조합 Saccharomyces cerevisiae에서 Invertase의 발현에 대한 Sucrose의 영향)

  • 임형권;김기홍;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.417-421
    • /
    • 1992
  • The expression pattern of the cloned SUC2 gene in recombinant Saccharomyces cerevisiae was investigated in a two-stage culture. The recombinant yeast grown in a glucose medium where the SUC2 gene was repressed was harvested and then resuspended in a sucrose medium to induce invertase expression. The maximum activity of 10 units was obtained in a medium containing 2 $g/\ell$ sucrose as a carbon source at $30^{\circ}C$ . The oscillatory behavior of invertase activity in response to glucose concentrations in the second stage was observed. This effect can be attributed to a series of events: invertase expression from the SUC2 gene. sucrose hydrolysis to glucose and fructose by invertase, SUC2 repression by high glucose concentration, invertase induction as a result of depletion of glucose used for the yeast growth. The invertase activity was increased by 72.5% when growth temperature changed from $30^{\circ}C$: to $35^{\circ}C$.

  • PDF

The Wine Yeast Strain-Dependent Expression of Genes Implicated in Sulfide Production in Response to Nitrogen Availability

  • Mendes-Ferreira, A.;Barbosa, C.;Jimenez-Marti, E.;Del Olmo, M.;Mendes-Faia, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1314-1321
    • /
    • 2010
  • Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here, we investigated by real-time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16, and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. The strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120 h and 72 h, respectively. In the presence of 267 mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently upregulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated with sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for the genetic improvement of wine yeasts.

Effects of Cdc31, a component of TREX-2 complex, on growth and mRNA export in fission yeast (분열효모에서 TREX-2 복합체의 구성요소인 Cdc31이 생장과 mRNA export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.383-387
    • /
    • 2016
  • In fission yeast, Schizosaccharomyces pombe, the cdc31 gene encodes a member of the conserved $Ca^{2+}$-binding centrin/CDC31 family, which is a component of spindle pole body. Here, we demonstrate that the S. pombe cdc31p is also a component of TREX-2 complex, which influences mRNA export from the nucleus to the cytoplasm. Repression of the cdc31 gene expression caused growth defect with accumulation of $poly(A)^+$ RNA in the nucleus. On the other hand, over-expression of cdc31 exhibited no defects of both growth and bulk mRNA export, but showed somewhat longer cell morphology. Yeast two-hybrid analysis showed that Cdc31 interacted with Sac3 and Pci2, the subunits of TREX-2 complex. These results suggest that S. pombe Cdc31 is also involved in mRNA export as a component of TREX-2 complex.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF