• 제목/요약/키워드: yeast expression

검색결과 528건 처리시간 0.024초

전분 분해성 산업용 Saccharomyces cerevisiae에서 Achlya bisexualis $\beta$-Amylase의 발현 특성 규명 (Characterization of Achlya bisexualis $\beta$-Amylase Expression in an Amylolytic Industrial Strain of Saccharomyces cerevisiae)

  • 이옥희;임미현;김지혜;유은혜;고현미;진종언;배석
    • 미생물학회지
    • /
    • 제44권3호
    • /
    • pp.264-269
    • /
    • 2008
  • $\beta$-Amylase를 생산하여 전분 분해능을 갖는 산업용 효모를 개발하기 위해 산업용 Saccharomyces cerevisiae에서 Achlya bisexualis $\beta$-amylase (BAMY)유전자를 ADC1 promoter에 연결하여 구성적으로 발현시켰다. 효모의 형질전환은 $\delta$-서열을 재조합 부위로 하는integration 시스템을 이용하였다. Integration 시스템의 세균 유전자 부분은 제거되고 BAMY 유전자와 $\delta$-서열을 갖고 있는 짧은integrative cassette를 제조하였다. BAMY 유전자를 발현하는 재조합 S. cerevisiae 형질전환체는 세포외 배지로 45 kDa의 $\beta$-amylase를 분비하였고, $\beta$-amylase 활성은 A. bisexualis에 비해 약 18.5배 높았다. 형질전환체에 다중도입된 BAMY 유전자는 비선택배지에서 100세대 생장 후에도 안정되게 유지되었다. 각종전분을 기질로 했을 매 $\beta$-amylase의 활성은soluble starch를 기질로 했을 경우와 유사하게 높았고, 가수분해산물 분석 결과 maltose가 주 분해산물이었다.

유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명 (Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression)

  • 정회명;최호정;남수완;전숭종;김연희
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.17-22
    • /
    • 2016
  • 에탄올은 산업적으로 매우 가치 있는 물질이지만, 효모세포에 있어서 에탄올의 축적은 세포 독성과 목적산물의 생산성을 감소시키는 스트레스원이다. 따라서 효모세포에 있어서 에탄올 내성의 증가는 에탄올 생산성 증대와 밀접한 관계가 있는 중요한 요소라고 할 수 있다. 본 연구에서는 에탄올 내성을 증가시키기 위해 YDJ1과 PEP5 유전자를 목적 유전자로 선정하여 이들 유전자의 과발현과 과발현에 따른 상호발현조절을 분석하여 에탄올 내성 메커니즘의 일부를 해명하고자 한다. YDJ1과 PEP5 유전자를 ADH1 promoter 하류에 연결시켜 pA-YDJ1과 pA-PEP5 plasmid를 구축하고 각각 BY4742, BY4742△ydj1와 BY4742△pep5 균주에 도입하였다. YDJ1과 PEP5 유전자의 과발현에 의해서 BY4742△ydj1/pA-YDJ1과 BY4742△pep5/pA-PEP5 균주의 에탄올내성이 숙주세포의 수준까지 회복되었음을 확인 할 수 있었다. 이 두 유전자의 상호발현조절을 조사하기 위해, BY4742△ydj1△pep5 균주에서 YDJ1과 PEP5 유전자의 과발현을 시도해본 결과, BY4742△ydj1△pep5/pA-YDJ1, pA-PEP5 균주의 경우, 8% 에탄올 배지에서 BY4742 균주의 약 90%정도 까지 에탄올 내성이 회복됨을 확인하였다. BY4742△ydj1△ pep5/pA-YDJ1, pA-PEP5 균주에서 YDJ1 유전자는 PEP5 유전자의 과발현을 더욱더 유도하여 에탄올 내성을 증가시켰으며, 이는 YDJ1 유전자가 PEP5 유전자의 상위에서 발현을 부분적으로 조절한다고 생각 할 수 있다.

Macrophage Migration Inhibitory Factor (MIF) Interacts with Bim and Inhibits Bim-mediated Apoptosis

  • Liu, Lingfeng;Chen, Jinzhong;Ji, Chaoneng;Zhang, Jiayi;Sun, Junlei;Li, Yao;Xie, Yi;Gu, Shaohua;Mao, Yumin
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.193-199
    • /
    • 2008
  • The pro-apoptotic Bcl-2 family member Bim acts as a sensor for apoptotic stimuli and initiates apoptosis through the mitochondrial pathway. To identify novel regulators of Bim, we employed the yeast two-hybrid system and isolated the human gene encoding macrophage migration inhibitory factor (MIF), a ubiquitously expressed proinflammatory mediator that has also been implicated in cell proliferation, the cell cycle and carcinogenesis. The interaction between MIF and Bim was confirmed by both in vitro and in vivo protein interaction assays. Intriguingly, protein complexes between MIF and the three major Bim isoforms (BimEL/BimL/BimS) could be detected in HEK293 and K562 cells, especially in cells undergoing apoptosis. Moreover, exogenous expression of MIF partially inhibited Bim-induced apoptosis in HEK293 cells. SiRNA-mediated knockdown of MIF increased apoptosis in K562 cells exposed to the chemical oxidant diamide. Endogenous MIF may regulate the pro-apoptotic activity of Bim and inhibit the release of cytochrome c from mitochondria.

잠재적인 항노화제로 텔로머레이즈 활성화제, 서르튜언 활성화제, 세노릭틱스에 대한 최신 동향 (Recent Trends on Telomerase Activators, Sirtuin Activators, and Senolytics as a Potential Anti-aging Agent)

  • 김문무
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.819-825
    • /
    • 2020
  • 모든 생명체는 연령이 증가함에 따라 생체 내에서 노화된 세포수가 축적되면서 피부주름 형성, 근육퇴화, 백내장 및 모발의 백발화 과정 같은 노화의 특성을 나타낸다. 이러한 노화의 핵심적인 원인으로 알려진 세포노화는 세포가 외부 및 내부요인에 의하여 늙어서 결국 세포의 증식이 정지됨으로 생물체의 노화와 직접적으로 밀접하게 연관되어 있다. 이러한 현상에 대한 보다 심층적인 연구로부터 세포노화의 원인이 텔로미어가 세포 분열에 따라 점차적으로 짧아짐으로, 텔로미어의 길이에 의해서 결정된다는 것이다. 최근에는 유전자 발현에 영향을 줄 수 있는 히스톤 디아세틸레이즈 유전자가 효모에서 뿐만 아니라 예쁜 꼬마 선충 및 사람의 항노와 기전에 깊숙히 관여하고 있다는 것이 밝혀졌다. 한편, 최근에는 늙은 세포가 노화 현상에 결정적인 역할을 한다는 것이 발견하여 이러한 노화세포를 채내로부터 제거함으로써 젊은 세포의 증식을 촉진하여 노화를 지연 할 수 있다는 것이 보고되었다. 그러므로 향후 잠재적인 항노화제를 개발하기 위해서는 텔로머레이즈 활성화제, 서르튜언 활성화제, 세노릭틱스에 대한 심층연구로부터 시작되어야 한다고 판단되어, 최근에 각광 받고 있는 위와 관련된 항노화 후보물질에 대한 최근 연구에 대하여 기술한다.

Overexpression of Gene Encoding Tonoplast Intrinsic Aquaporin Promotes Urea Transport in Arabidopsis

  • Kim, Sun-Hee;Kim, Kang-Il;Ju, Hyun-Woo;Lee, Ho-Joung;Hong, Suk-Whan
    • Journal of Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.102-110
    • /
    • 2008
  • Complementation assay of the urea uptake-defective yeast mutants led to the identification of the Arabidopsis AtTIP4;1 gene encoding the aquaporin. However, its physiological functions still remain elusive. In the present study, histochemical and genetic analyses were performed to understand the physiological roles of AtTIP4;1 in urea uptake. The AtTIP4;1 product was detectible in the roots, but not in the leaves, the stem, and the flower. Its promoter allowed the expression of the $\beta$-glucuronidase reporter gene in the roots and the apical meristem in Arabidopsis. The AtTIP4;1 products were induced under nitrogen-deficient conditions. To investigate the role of the tonoplast intrinsic protein in urea transport and developments, Arabidopsis with the loss- and the gain-of-function mutations by T-DNA insertion in AtTIP4;1 and 35S promoter-mediated overexpression of AtTIP4;1 were identified, respectively. The transfer DNA insertion and the AtTIP4;1-overexpressed plants showed normal growth and development under normal or abiotic stress growth conditions. The urea-uptake studies using $^{14}C$-labeled urea revealed higher accumulation of urea in the AtTIP4;1-overexpressed plants. These results provide evidence that overexpression of AtTIP4;1 leads to the increase in the urea-uptake rate in plants without detectable defects to the growth and development.

Isolation and Characterization of Pathogen inducible Leucine Zipper containing Gene from rice (Oryza sativa L. cv. Dongjin)

  • Park, Sang-Ryeol;Song, Hae-Sook;Moon, Kyung-Mi;Hwang, Duk-Ju;Kim, Tae-Ho;Han, Seong-Sook;Go, Seung-Joo;Byun, Myung-Ok
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.83.2-83
    • /
    • 2003
  • A full length cDNA, OsLEUZIP, encoding leucine zipper containing protein from rice EST of rice (0ryza sativa L. cv. Dongjin) treated Xanthomonas oryzae pv. oryzae 10331. OsLEUZIP contains 1,227 bp nucleotides and encodes a protein of 408 amino acid residues with predicted molecular weight of 47,229 Da. The deduced amino acid sequence of OsLEUZIP has consensus sequence of leucine zipper from PROSITE (PDOC00029), L-X(6)-L-X(6)-L-X(6) -L. OsLEUZIP gene were preferentially induced in rice during incompatible interaction with Xanthomonas oryzae pv. oryzae 10331 and Pyracuraria grisea KJ-301. Expression of OsLEUZIP gene was also induced by treatment of abiotics such as ethephon and ABA. Our data represented in this study suggesting that OsLEUZIP gene may play an important role in the rice defense-related. Further studies of this gene, overexpression in rice, yeast-two hybrid assay, electrophoretic mobility shift assay and northern blot analyses of transgenic plant, would be useful to elucidate the role of the OsLEUZIP gene in defense responses of rice.

  • PDF

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli

  • Tamaki, Shun;Yagi, Mitsuhiko;Nishihata, Yuki;Yamaji, Hideki;Shigeri, Yasushi;Uno, Tomohide;Imaishi, Hiromasa
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.439-447
    • /
    • 2018
  • The aromatic compound p-hydroxybenzoate (PHBA) is an important material with multiple applications, including as a building block of liquid crystal polymers in chemical industries. The cytochrome P450 (CYP) enzymes are beneficial monooxygenases for the synthesis of chemicals, and CYP53A15 from fungus Cochliobolus lunatus is capable of executing the hydroxylation from benzoate to PHBA. Here, we constructed a system for the bioconversion of benzoate to PHBA in Escherichia coli cells coexpressing CYP53A15 and human NADPH-P450 oxidoreductase (CPR) genes as a redox partner. For suitable coexpression of CYP53A15 and CPR, we originally constructed five plasmids in which we replaced the N-terminal transmembrane region of CYP53A15 with a portion of the N-terminus of various mammalian P450s. PHBA productivity was the greatest when CYP53A15 expression was induced at $20^{\circ}C$ in $2{\times}YT$ medium in host E. coli strain ${\Delta}gcvR$ transformed with an N-terminal transmembrane region of rabbit CYP2C3. By optimizing each reaction condition (reaction temperature, substrate concentration, reaction time, and E. coli cell concentration), we achieved 90% whole-cell conversion of benzoate. Our data demonstrate that the described novel E. coli bioconversion system is a more efficient tool for PHBA production from benzoate than the previously described yeast system.

Evaluation of Antifreeze Proteins on Miniature Pig Sperm Viability, DNA Damage, and Acrosome Status during Cryopreservation

  • Kim, Daeyoung
    • 한국수정란이식학회지
    • /
    • 제31권4호
    • /
    • pp.355-365
    • /
    • 2016
  • The cryopreservation of sperm has become the subject of research for successful artificial insemination technologies. Antifreeze proteins (AFPs), one of the factors necessary for effective cryopreservation, are derived from certain Antarctic organisms. These proteins decrease the freezing point of water within these organisms to below the temperature of the surrounding seawater to protect the organism from cold shock. Accordingly, a recent study found that AFPs can increase the motility and viability of spermatozoa during cryopreservation. To evaluate this relationship, we performed cryopreservation of boar sperm with AFPs produced in the Arctic yeast Leucosporidium sp. AFP expression system at four concentrations (0, 0.01, 0.1, and $1{\mu}g/ml$) and evaluated motility using computer assisted sperm analysis. DNA damage to boar spermatozoa was measured by the comet assay, and sperm membrane integrity and acrosome integrity were evaluated by flow cytometry. The results showed that motility was positively affected by the addition of AFP at each concentration except $1{\mu}g/ml$ (p<0.001). Although cryopreservation with AFP decreased the viability of the boar sperm using, the tail DNA analyses showed that there was no significant difference between the control and the addition of 0.1 or $0.01{\mu}g/ml$ AFP. In addition, the percentage of live sperm with intact acrosomes showed the least significant difference between the control and $0.1{\mu}g/ml$ AFP (p<0.05), but increased with $1{\mu}g/ml$ AFP (p<0.001). Our results indicate that the addition of AFP during boar sperm cryopreservation can improve viability and acrosome integrity after thawing.