• Title/Summary/Keyword: yarn structure

Search Result 137, Processing Time 0.019 seconds

A Study on Moisture Related Properties and Human Sensations of Underwear (1) -A Study on Water and Water Vapor Transport characteristics of Underwear Fabrics- (시판 내의류소재의 수분특성 및 착용감에 관한 연구 (I) -시판 내의류 소재의 수분특성-)

  • 이순원
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 1988
  • The purpose of this study is to investigate water and after vapor transport characteristics of underwear fabrics. Experimental materials were cotton woven fabric and cotton knitted fabric, nylon tricot (untreated and hydrophilic finished) and cotton/polyester/cotton triple layer. Cotton knitted fabric have three types of knit structure (interlock, rib, plain stitch) and knit with either 38's or 60's combed yarn. And cotton woven fabric have plain weave with 60's combed yarn. As experimental methods, vapor cup test, dynamic method, vertical wicking test and transplanar uptake test were used. The results are as follows. 1) In cotton specimens, the order of water vapor transpiration (wvt) was plain > rib > interlock in the same yarn diameter. The knit fabric of thinner yarn showed the better wvt among the same knit structure. 2) In cotton specimens, the order of water absorbency was interlock > rib > plain in the same yarn diameter. the knit fabric of thicker yarn showed the better absorbency among the same knit structure. 3) When knit fabric (60's plain) is compared with woven fabric 960's plain), knit fabric showed faster rate of wvt, more amount of uptake and slower rate of water uptake than woven fabric did. 4) When compared untreated nylon with hydrophilic finished nylon, hydrophilic finished nylon showed much more water absorbency than untreated nylon did, but showed same rate of wvt. 5) The water transport characteristics of triple layer underwear fabric showed that the thinner and the lighter one, the better wvt and absorbency did.

  • PDF

Heat Processing and Dyeing Properties of Fabrics by Using Composite Fancy Yarn Containing Low Melting PET Yarn (저온융착 폴리에스테르사 함유 팬시사 직물의 열처리 특성 및 염색성)

  • Sung, Woo Kyung
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1024-1031
    • /
    • 2012
  • The thermal bonding PET fabrics were produced through high temperature steaming (HTS) of low melting PET yarn as warp and composite fancy yarn containing low melting PET yarn as weft. The low melting PET yarn of sheath-core structure consisted of a regular PET in core portion and low melting PET in sheath portion. The composite fancy yarn consisted of regular PET yarn as inner part and effect part and low melting PET yarn as binding part. This study was carried out to investigate the melting behavior of thermal bonded PET fabric, the effect of HTS on the thermal bonding, mechanical properties, and dyeing properties. The melting peak of low melting PET yarn showed two melting peaks caused by sheath-core structure. Almost the entire thermal bonding of the fancy PET fabrics containing low melting PET yarn has formed at $200^{\circ}C{\times}3min$ of HTS. The tensile strength in warp and weft direction of the fancy PET fabrics slightly decreased as temperature of HTS increased. The total K/S value of the fancy PET fabrics decreased slightly to $180^{\circ}C{\times}3min$ of HTS, while increased slightly above $200^{\circ}C{\times}3min$ of HTS. The changes in the hue angle ($H^{\circ}$) of the thermal bonded fancy PET fabrics dyed with disperse dyes hardly ever happened.

Water Vapor and Thermal Transmission Properties of Hybrid Yarns Fabrics for High Emotional Garments -Water Vapor and Heat Transport according to Experimental-Method- (고감성 의류용 복합사 직물의 수분증기 및 열이동 특성 -실험방법에 따른 수분증기 및 열이동-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.84-97
    • /
    • 2017
  • Water vapor and thermal transmission properties of high emotional garments are important to evaluate wear comfort; in addition, the measuring methods of these properties are also critical for breathable and warm suit fabrics. In this study, the water vapor and thermal properties of composite yarn fabrics made of CoolMax, Tencel, and Bamboo fibers with filaments were measured and compared according to the measuring method. Water Vapor Transmittance (WVT) of the fabric woven by the sheath/core composite yarn in the warp direction was the highest due to the small staple fiber volume in the sheath/core yarn structure and high air voids in the sheath/core yarn fabrics. This property was also the highest in fabrics woven by bamboo staple yarns in the weft direction, and was the lowest on hi-multi filament fabrics. However, water vapor resistance ($R_{ef}$) of these fabrics by KSK ISO 11092 showed the opposite results to the water vapor transmittance method ($CaCl_2$ method); in addition, its correlation coefficient was low. The correlation coefficient between $R_{ef}$ and the drying rate was 0.719; therefore, the measurement mechanism of $R_{ef}$ is analogous to the drying property measurement. The thermal conductivity of the fabrics woven with compact staple yarn showed a high value; however, the hi-multi filament fabric showed low thermal conductivity. Therefore, fiber characteristics affect thermal properties more than yarn structure. The correlation between thermal property and moisture transport was also low. This study showed that: water vapor transmittance was active at the loose yarn structure, dry heat transport was vigorous at the compact yarn structure, and heat transport was affected more by fiber characteristics than yarn structure. In conclusion, sheath/core composite yarns were relevant to the high absorptive cool suit along with siro-fil and CoolMax/Bamboo staple yarns that were relevant to the heat diffusive cool suit.

Yarn Hairiness Affecting Fluff Generation

  • Koo, Young-Seok
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.119-123
    • /
    • 2003
  • Fluff (lint, fiber fly) generation, especially related to yarn structure, was investigated. Research centered on the fiber length related to fluff generation during the knitting process. Short fiber length composing yarn structure was a main source of the fluff shedding. High quality spun yarn with longer length of fiber was recommended to the high speed knitting industry in order to reduce process troubles such as yarn breakage, etc. but the cost is doubtable to the manufacturers. A trial to reduce the fluff trouble by using chemicals to hold the short fiber on the surface of the yam was suggested and the research showed a positive effect to the problem. However, another factors including a by-product of chemical residue and searching more feasible material need to be concerned for the future research.

Effect of Air-jet Texturing Conditions on the Physical Properties of Low Melting Polyester/Tencel Composite Yarn (에어제트 텍스처링 조건이 저융점 폴리에스터/텐셀 복합사의 물리적 특성에 미치는 영향)

  • Lee, Sun Young;Yoo, Jae Jung;Choi, Oh Gon;Lee, Si Woo;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Physical properties of the composite yarn using low-melting(LM) polyester/Tencel were investigated with air-jet texturing conditions such as temperature, take-up overfeed, yarn speed and air pressure. Surface morphology, microstructure, tensile property, glossiness were evaluated. Surface morphology of a composite yarn had more damaged and loosened structure according to increase of take-up overfeed, yarn speed and air pressure. Crystallinity was affected by parameters such as temperature, yarn speed, take-up overfeed and air pressure and especially, yarn speed was most effective for increase of crystallinity. Also, it was found that temperature and air pressure had significantly affected tensile properties of a composite yarn. The glossiness of yarn increased with increase of temperature, yarn speed and air pressure.

The Mechanical Properties of Fluffy Spun-like Yarn by ATY Textured (1) (ATY 사가공에 의한 Fluffy Spun-like Yarn의 물성 (1))

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.223-231
    • /
    • 2013
  • This research has a main focus on providing fundamental data for on-the-spot industrial fields by comparing and contrasting physical properties of fluffy spun-like material. The fluffy spun-like yarn is developed as fluffy yarn similar to natural spun-like yarn by treating polyester(FDY and + type shaped DTY) with ATY machine. In this experiment, using ATY machine for raw material texturing, we produced two fluffy yarns: (i) + type shaped(50d/36f, DTY) as core yarn and 100d/192f FDY as effect yarn[ATY(D)], (ii) FDY(75/36) as core yarn and 100d/192f FDY [ATY(F)] as effect yarn. After producing thous yarns, we twisted them with 500T/M, 700T/M, 1000T/M, respectively. produced yarns through this process were used as the samples for this experiment. Even though the shrinkage of fluffy yarn ATY(F) and ATY(D) becomes high as treated temperature rises and treated time lengthens, it is more affected by treated temperature then by treated time. In this experiment, produced fluffy yarn[ATY(D)] shows a little high values for temperature, but almost same values for higher temperatures. When we compare ATY(F) with ATY(D) fluffy yarn shows more natural fluffy yarn surface structure like natural cotton. The shrinkage of 700T/M twisted ATY(D) fluffy yarn show about 11% under treated temperature $180^{\circ}C$ and treated time 30min, and about 7% under $120^{\circ}C$ and 30min, respectively. But the shrinkage of 1000T/M fluffy yarn shoes about 9% and 6% under same conditions. Regarding treated time, tenacity and initial modulus of ATY(D) fluffy yarn rise high until 30min, but do not show much increase above 30min. Regarding treated temperature, tenacity and initial modulus of it rise high aboyer $140^{\circ}C$.

Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method- (고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.28-42
    • /
    • 2017
  • Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

The appearance change and heat·moisture transfer properties of knitted fabric by yarn shrinkage (원사의 수축에 따른 다공성 편성물의 형태변화와 열·수분 전달특성)

  • Sang, Jeong-Seon;Park, Juhyun;Lee, Mee-Sik;Oh, Kyung Wha
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.6
    • /
    • pp.880-892
    • /
    • 2017
  • In this study, the appearance change and the heat moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.

A Study on the Dyeing and Physical Properties of Napping Knit Fabric using Latent Crimped Yarn (잠재권축사를 적용한 기모편성물의 염색 및 물성변화에 대한 연구)

  • Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.182-190
    • /
    • 2021
  • The purpose of this study is to provide the dyeing and physical characteristics of napped knit fabrics composed of latent crimped yarn. The K/S values, dyeing fastness, thickness, bulkiness, and shrinkage characteristics of three knit fabrics were investigated. The original knit fabric (SK) was composed of 1ply latent crimped yarn (75/36) in the ground and PET DTY (70/100) in the pile loop, in order of napped process the napped knit fabric (SN) was napped SK fabric. In order to compare of latent crimped yarn content, the last knit fabric (DN) was napped 2ply latent crimped yarn were included in the same structure of SK. Dyeability of three knit fabrics was similar but the shrinkage properties of DN fabric were significant different. The bulkiness shows a tendency to increase the bulkiness as increasing the dyeing temperature, and the bulkiness of the SN was higher because of the napping process and optimal content of latent crimped yarn.

Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics (PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.2
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.