• 제목/요약/키워드: yarn structure

검색결과 137건 처리시간 0.021초

Solo spun 방적에서 섬유의 거동과 사의 물리적 성질(2) (The Fiber Behavior in Solo-spun Yarn Formation and the Physical Properties of Solo-spun Yarn(2))

  • 박수현;김승진
    • 한국염색가공학회지
    • /
    • 제13권6호
    • /
    • pp.70-70
    • /
    • 2001
  • This study surveys the fiber behavior in yarn formation and the Physical properties of Solo-spun yarn. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier In the previous part, the physical properties such as yarn count, evenness, strength, and breaking elongation of these yarns were compared with the properties of ring spun yarns and analysed with the mechanism of Solo-spun yarn formation. In the second part of this report, the abrasion resistance and hairiness were discussed with respect to the micro yarn structures. The narrower the groove width of Solo-spun roller is, the more active the bulk fiber migration is. The Solo-spun yarn structure has two groups. One is shorter than the other one in longitudinal direction of yarn and has the same structure as ring-spun yarn, which is derived from the smooth zone on the surface of Solo-spun roller. The other one is longer than the former and there are the wrapping fibers. This part is derived from the conflicted grooves on the surface of Solo-spun roller.

스포츠쟈켓용 나일론/면 교직물의 설계조건에 따른 역학적 특성과 태 (Effect of Fabric Design Condition on the Mechanical Properties and Handle of Nylon/Cotton Union Fabrics for Sport Jacket)

  • 권오경;송민규
    • 한국의류산업학회지
    • /
    • 제5권3호
    • /
    • pp.267-272
    • /
    • 2003
  • Tactel(Nylon66) union fabrics were woven with the specification of 70d/34f nylon as warp for sport wear jacket. Weft yarn has three types; 100% cotton yarn, nylon core-spun yarn and nylon-polyurethane covering yarn as weft. Fabric structers were plain, twill and satin weave structure with the air jet loom. The mechanical properties of 8 fabrics were measured with KES-F and primary Hand Values and Total Hand Values were calculated. The results of the study were as follows: 1) There was little difference among LTs of N/CM fabric groups. RT of the fabrics with CM100's was bigger than that of fabrics with CM80's, resulting that the fabrics with CM100's have better formability. In terms of weaving structure, twill fabrics have shape deformation. 2) In comparison of RTs with weft yarn type, RT of N-PU covering yarn was the highest, followed by Nylon core-spun yarn and cotton yarn. Thus, the fabric with N-PU covering yarn has better stability of shape deformation. 3) Stretch yarn could express an excellent silhouette formation and twill and satin structures were better structure to make curvature on human form. 4) 2HG/G value of nylon core-spun fabrics was larger than that of N/C fabrics, but the silhouette formation of N/C fabrics was excellent. 5) The RC of N/PU was the highest, followed by N/P, and N/CM. 6) Koski of N/PU fabrics was the highest, Numeri of N/PU and N/Co-I were relatively higher than the others. THVs of N/CM-IV and N/CO-II were lower than the others, resulting that, twill structure was better than plain structure for a sport wear uses.

Yarn Segmentation from 3-D Voxel Data for Analysis of Textile Fabric Structure

  • Shinohara, Toshihiro;Takayama, Jun-ya;Ohyama, Shinji;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.877-881
    • /
    • 2005
  • In this paper, a novel method for analyzing a textile fabric structure is proposed to segment each yarn of the textile fabric from voxel data made out of its X-ray computed tomography (CT) images. In order to segment the each yarn, directions of fibers, of which yarn consists, are firstly estimated by correlating the voxel with a fiber model. Second, each fiber is reconstructed by clustering the voxel of the fiber using the estimated fiber direction as a similarity. Then, each yarn is reconstructed by clustering the reconstructed fibers using a distance which is newly defined as a dissimilarity. Consequently, each yarn of the textile fabric is segmented from the voxel data. The effectiveness of the proposed method is confirmed by experimentally applying the method to voxel data of a sample plain woven fabric, which is made of polyester two folded yarn. The each two folded yarn is correctly segmented by the proposed method.

  • PDF

DTP(Digital Textile Printing)에서 미디어의 원사꼬임 및 편성구조가 프린팅 Quality에 미치는 영향(2) (Effects on Printing Quality according to Yarn Twist and Knitting Structure of Media in Digital Textile Printing(II))

  • 박순영;전동원;박윤철;이범수
    • 한국염색가공학회지
    • /
    • 제23권1호
    • /
    • pp.35-42
    • /
    • 2011
  • For high quality DTP products, it is important to optimize the parameters of media, pre- and after-treatment, ink, printer, etc. This study investigated the effect of types of fabrics(media) as a DTP parameters. Especially, the effects of media properties such as yarn twist and knitted fabric structure, on printability and color difference were examined. Two types of cotton yarn twist(830 and 1630 twist/meter) and five knitted structures of media were prepared with a single circular knitting machine. The K/S values of hard-twist samples were higher than those of normal-twist samples in every media structures. It is more effective to use the knitted fabrics of a hard-twist yarn to obtain dark color in the printing above input level value 60 where the printability improvement was most pronounced in case of plain structure. Among the five media structures a plain structure was the highest and that of corduroy was the lowest in terms of K/S values. Also ${\Delta}E$ values and lightness of the hard-twist yarn samples were smaller than that of normal-twist yarn samples when ${\Delta}E$ values were tested by using a standard of a normal twist yarn sample with a plain structure, which was increased in the case of corduroy structure.

재생 방법에 따른 재생 폴리에스터사의 물성 변화 (Physical Properties of Recycled Polyester Yarns According to Recycling Methods)

  • 이선영;원종성;유재정;함완규;이승구
    • 한국염색가공학회지
    • /
    • 제24권1호
    • /
    • pp.91-96
    • /
    • 2012
  • The physical properties of recycled polyester yarns according to recycling methods were investigated. Virgin polyester draw texturized yarn(DTY), material-recycled(MR) polyester DTY and chemical-recycled(CR) polyester DTY were prepared. Surface morphology, thermal property, micro-structure and mechanical property of recycled polyester yarns were estimated. SEM-EDS analysis showed that the CR PET yarn had better crimp and more stable structure than MR PET yarn. Tm of the MR PET yarn was higher than that of the CR PET yarn. The intensity of the crystallization peak of the CR PET yarn was a little higher than that of the MR PET yarn. Tensile strength of the MR PET yarn was slightly higher than that of the CR PET yarn. Breaking elongation of the CR PET yarn was slightly higher than that of the MR PET yarn.

PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성 (Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio)

  • 사아나;이정순
    • 한국의류산업학회지
    • /
    • 제17권2호
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

Analysis of Knit Fabric Structure with its Voxel Data

  • Shinohara, T.;Takayama, J.;Ohyama, S.;Kobayashi, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.53-56
    • /
    • 2003
  • For identifying how a sample knit fabric is woven a method to obtain positional information of each yarn of the sample from voxel data made out of its x-ray CT images is newly proposed in this paper. The positional information is obtained by tracing the each yarn. The each yarn is traced by estimating a direction of the yarn in a certain small region in which the yarn can be regarded as straight and moving the region slightly along the estimated direction alternately. The yarn direction is estimated by correlating the voxel data in the region with a three-dimensional yarn model. The effectiveness of this method is confirmed by applying the method to voxel data made out of CT images of a knit fabric experimentally.

  • PDF

Solo spun 방적에서 섬유의 거동과 사의 물리적 성질(2) (The Fiber Behavior in Solo-spun Yarn Formation and the Physical Properties of Solo-spun Yarn(2))

  • 박수현;김승진
    • 한국염색가공학회지
    • /
    • 제13권6호
    • /
    • pp.428-434
    • /
    • 2001
  • This study surveys the fiber behavior in yam formation and the Physical properties of Solo-spun yarn. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier In the previous part, the physical properties such as yarn count, evenness, strength, and breaking elongation of these yams were compared with the properties of ring shun yarns and analysed with the mechanism of Solo-spun yarn formation. In the second part of this report, the abrasion resistance and hairiness were discussed wish respect to the micro yarn structures. The narrower the groove width of Solo-spun roller is, the more active the bulk fibers migration is. The Solo-spun film structure has two groups. One is shorter than the others one in longitudinal direction of yarn and has the same structure as ring-spun yarn, which is derided from the smooth zone on the surface of Solo-spun roller. The other one is longer than the former and there are the wrapping fibers. This part is derived from the conflicted grooves on the surface of Solo-spun troller.

  • PDF

고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 - (Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure -)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제18권1호
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

견직물의 물리적 자극에 따른 태와 역학적 특성 (Physical Stimulus of Silk Woven Fabrics, Subjective Hand and Mechanical Properties)

  • 김춘정;나영주
    • 한국의류학회지
    • /
    • 제24권3호
    • /
    • pp.429-439
    • /
    • 2000
  • This study was aimed to investigate the handle and mechanical properties of silk woven fabrics according to the fabric structure and yarn types 56 male and female students evaluated 16 black specimens with semantic differential scale of 20 hand adjectives. Mechanical parameters such as surface properties, bending properties and compression properties were tested using by KES-FS system. Data were analyzed through factor analysis, pearson correlation coefficient and t-test using PC SAS package. The results were as follows: The hand adjectives were grouped as 4 'surface roughness', 'flexibility', ;sense of thermal', and 'dryness'. 'Surface roughness' was highly sensed at satin fabrics of hard-twist yarn, noil yarn and spun yarn, while it was not at the fabrics of normal satin and twill at all. 'Flexibility' was reverse to 'surface roughness'. Thermal sense was felt highly at satin fabrics of noil-yarn, while low at plain fabrics of normal yarn. 'Dryness' was high at satin fabrics of hard-twist yarn and while it was low at normal satin fabrics. Predicted equations for subjective hand from mechanical properties of fabrics were developed using Stevens's law and stepwise regression and the coefficients of determination were high.

  • PDF