• Title/Summary/Keyword: yacht

Search Result 152, Processing Time 0.026 seconds

A marine leisure of the archipelago at the southwest sea area and its adaptation to yacht business (서남권 다도해 해역의 해양 레저와 요트 산업 적용)

  • Park S. H.;Jung D. D.;Jeong J. S.;Kim C. S.;Nam T. N.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.197-202
    • /
    • 2004
  • In this paper, we tackled the marine leisure business of the archipelago at the southwest sea area which has the natural advantage for marine leisure. We also discuss how to adapt the yacht business on the above area. At first, we will introduce the predominant case on the marine leisure business of the overseas. Next we will analyze the current situation of the domestic marine leisure and draw up a plan to solve its problem. Finally we apply an environment friendly marina establishment to the archipelago at the southwest sea area and evaluate its validity.

  • PDF

The study On An Yacht Moorings Establishment Location Analysis Using Optimum Spiral Method (최적화 기법을 이용한 요트 계류장 입지분석에 관한 연구)

  • Park, Sung-Hyeon;Joo, Ki-See
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • This study is to determine an optimal yacht mooring location candidate among many alternative candidates in order to obtain the maximized efficiency under the natural conditions using integer programming. To deal with marina's construction location, the optimal construction location is selected using 21 important factors analysis for 4 candidates in the Mokpo city. The development period and the initial investment cost weight are one and half times more than the others among 21 factors. The optimal spiral analysis of weighted linear model shows that the Peace Square sea area is selected as the most optimal place among 4 candidates. This proposed model has not been applied in the optimal marina's facility candidate selection problem yet. This paper will contribute to determine the most reasonable alternative. Also, this proposal model can be applied to other marina's facility candidate selection problem in other regions.

Fluid-Structure Interaction Analysis on the Deformation of Simplified Yacht Sails (단순형태 세일의 변형에 대한 유체-구조 연성 해석)

  • Bak, Sera;Yoo, Jaehoon;Song, Chang Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Since most of yacht sails are made of thin fabric, they form cambered sail shape that can efficiently generate lift power by aerodynamic interaction and by external force delivered from supporting structures such as mast and boom. When the incident flow and external force alter in terms of volume or condition, the shape of sail also change. This deformation in shape has impact on the peripheral flow and aerodynamic interaction of the sail, and thus it is related to the deformation of the sail in shape again. Therefore, the precise optimization of aerodynamic performance of sail requires fluid-structure interaction (FSI) analysis. In this study, the simplified sail without camber was under experiment for one-way FSI that uses the result of flow analysis to the structural analysis as load condition in an attempt to fluid-structure interaction phenomenon. To confirm the validity of the analytical methods and the reliability of numerical computation, the difference in deformation by the number of finite element was compared. This study reproduced the boundary conditions that sail could have by rigs such as mast and boom and looked into the deformation of sail. Sail has non-linear deformation such as wrinkles because it is made of a thin fabric material. Thus non-linear structural analysis was conducted and the results were compared with those of analysis on elastic material.

A Study on the Comparison of Resistance Performance for Shape of Fin Keel of Sailing Yacht (세일링요트 핀킬 형상별 저항특성 비교연구)

  • Choo Kyung-Hoon;Sim Sang-Mok;Park Choung-Kwan;Jin Song-Han;Kwon Seong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.375-379
    • /
    • 2006
  • The keel attached on bottom of hull part prevents yacht from flowing sideway by sailing posture. The keel remove a heel moment and make the force of stability. The selection of suitable keel is important bemuse it has an influence on the safety. Also the appendage attached on bottom of keel part lower ballast weight center and have influence on hull stability. The optimum shape about the keel is very important. So this study has compared with characteristics of resistance depending on the shape of the lower part of fin keel in the same surface of water submersion, we have attached three different types of models of lower part of fin keels to the model ships using circulating water channel and analyzed resistance characteristics per shape to arrive at the optimum shape of reduction of resistance.

A Study on the Comparison of Resistance Performance for shape of fin keel of sailing yacht (세일링요트 핀킬 형상별 저항특성 비교연구)

  • Choo Kyung-Hoon;Sim Sang-Mok;Park Choung-Kwan;Jin Song-Han;Kwon Seong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.235-239
    • /
    • 2006
  • The keel attached on bottom of hull part prevents yacht from flowing sideway by sailing posture. So this study has compared with characteristics of resistance depending on the shape af the lower part of fin keel in the same surface af water submersion, we have attached three different types of models of lower part of fin keels to the model ships using circulating water channel and analyzed resistance characteristics per shape to arrive at the optimum shape of reduction of resistance.

  • PDF

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Implementation of an Auto-Steering System for Recreational Marine Crafts Using Android Platform and NMEA Network

  • Beirami, Mohammadamin;Lee, Hee Yong;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.577-585
    • /
    • 2015
  • This paper deals with development of an autopilot system for leisure yacht based on NMEA 2000 network and android platform. The developed system can operate both for manual steering and automatic navigation mode. In automatic steering mode, after manipulation of commands which are NMEA 0183 sentences by android platform, the developed system translates and sends the packets through NMEA 2000 network. Then the controller which is connected to NMEA 2000 network receives the commands and controls the boat's rudder system automatically. The automatic steering mode is achieved by cooperation of two controllers; one for controlling the rudder system, and the other for controlling the vessel's heading. To control the vessel's rudder and heading angle two PID controllers are developed with an adjustable dead-band gain. Also, in order to eliminate the steady-state error occurred by applying dead-band, an integral controller which specifically supervises the system's behavior inside the dead-band area is developed. In this paper, at the first stage, simulations are accomplished using computer in order to examine the feasibility of the proposed based on simulation results. In the next step, the system on a real hydraulic steering model is implemented and at the end the performance examination by implementing it on a real boat and doing test navigation is executed.

FSI Simulation of the Sail Performance considering Standing Rig Deformation (리그변형을 고려한 세일 성능의 유체-구조 연성해석)

  • Bak, Sera;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.421-430
    • /
    • 2018
  • The shape of a yacht sail made of thin fabric materials is easily deformed by wind speed and direction and it is affected by the deformation of the standing rig such as mast, boom, shrouds, stays and spreaders. This deformed sail shape changes the air flow over the sail, it makes the deformation of the sail and the rig again. To get a sail performance accurately these interactive behavior of sail system should be studied in aspects of the aerodynamics and the fluid-structure interaction. In this study aerodynamic analysis for the sail system of a 30 feet sloop is carried out and the obtained dynamic pressure on the sail surface is applied as the loading condition of the calculation to get the deformations of the sail shape and the rig. Supporting forces by rig are applied as boundary condition of the structure deformation calculations. And the characteristics of the air flow and the dynamic pressure over the deformed sail shape is investigated repeatedly including the lift force and the location of CE.

Comparison Study and Structural Analysis to Investigate the Design Rule and Criteria of Catamaran (쌍동선의 설계규정 검토를 위한 규정 비교 및 구조 해석)

  • Kim, Byung-Jong;Kwon, Soo-Yeon;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.479-489
    • /
    • 2011
  • Leisure boat and yacht should be designed to meet the domestic regulation and international standards as large merchant vessels do. Recently, each countries are encouraged to follow the regulation of International standards organization. Furthermore domestic organization has not yet announced the design rule and regulation for FRP-catamaran yacht design. Therefore, it has been required to make the regulation for domestic situations of FRP-catamaran. This study deals with the structural strength evaluation of 50ft catamaran by using finite element analysis. Design load of the regulation of International standards organization are compared with the regulation of Korea Register of shipping and Lloyd's Register.