• Title/Summary/Keyword: xylanases

Search Result 63, Processing Time 0.028 seconds

Construction of Interspecific Hybrids detween Aspergillus spp. by Nuclear transfer (수종의 Aspergillus 속 균 사이의 핵전이에 의한 종간잡종 형성)

  • 노형선;이정애;이영하;김진미;정재훈;맹필재
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 1991
  • Interspecific hybrids between the ASpergillus spp., A. awamori, A. usamii and A. oryzae, were obtained by nuclear transfer technique. Nuclei isolated from an auxotrophic mutant strain were transferred into the protoplasts of a recipient strain of different species. The frequency of interspecific hybrid formation by nuclear transfer was $2*10^{-5}$ $-7*10^{-4}$ In contrast, no interspecific hybrid was isolated by protoplast fusion. Among the hybrids tested, 10 strains showed increased activity of some or all components of cellulases, xylanases and amylase up to more than two times. Isozyme pattern of the hybrids were analyzed by polyacrylamide gel electrophoresis and isoelectric focusing followed by activity staining, which showed that some of the hybrids have isozyme patterns unidentical to either of the two parents. By measuring the DNA contents and the sizes ofthe conidia, the karyotypes of the hybrids were estimated to be aneuploid near to haploid, diploid or triploid. It was concluded that the unclear transfer technique is much more efficient in the formation of interspecific hybrids than protoplast fusion and is very useful for the improvement of Aspergillus strains.

  • PDF

Complete genome sequence of Tamlana sp. UJ94 degrading alginate (알긴산을 분해하는 세균 Tamlana sp. UJ94의 완전한 유전체 서열)

  • Jung, Jaejoon;Bae, Seung Seob;Chung, Dawoon;Baek, Kyunghwa
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.463-464
    • /
    • 2018
  • Tamlana sp. UJ94 isolated from seawater can degrade alginate. To identify the genomic basis of this activity, the genome was sequenced. The genome was composed of 4,116,543 bp, 3,609 coding sequences, and 35.2 mol% G + C content. A BLASTp search predicted the presence of 9 alginate lyases as well as 6 agarases, 5 amylases, 4 carrageenases, 1 cellulase, 4 pectate lyases, and 7 xylanases, indicating its ability to degrade diverse polysaccharides. The genome of strain UJ94 is a source of polysaccharide-degrading enzymes for bioconversion processes.

Isolation and Characterization of Xylanase from a Novel Strain, Penicillium menonorum SP10

  • Thi Thu Huong Luong;Supattra Poeaim ;Narumon Tangthirasunun
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.239-245
    • /
    • 2023
  • Xylanase has been applied in various sectors, such as biomass conversion, paper, pulp, textiles, and pharmaceutical industries. This study aimed to isolate and screen potential xylanase-producing fungi from the soil of Suphan Buri Province, Thailand. Fifteen fungi were isolated, and their xylanase activities were tested by the qualitative method. The result showed that isolate SP3, SP10 and SP15 gave high xylanase activity with potency index (PI) of 2.32, 2.01 and 1.82, respectively. These fungi were selected for the xylanase quantitative test, isolate SP10 performed the highest xylanase activity with 0.535 U/mL. Through molecular methods using the 𝛽-tubulin gene, isolate SP10 was identified as Penicillium menonorum. The xylanase characteristics from P. menonorum SP10 were determined, including the xylanase isoforms and the optimum pH and temperature. The xylanase isoforms on SDS-PAGE indicated that P. menonorum SP10 produced two xylanases (45 and 54 kDa). Moreover, its xylanase worked optimally at pH 6 and 55 ℃ while reaching 61% activity at 65 ℃. These results proposed P. menonorum SP10 as a good candidate for industrial uses, especially in poultry feed and pulp industries, to improve yield and economic efficiency under slightly acidic and high-temperature conditions.

Characterization and Action Patterns of Two ${\beta}$-1,4-Glucanases Purified from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Choi, Woo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1291-1299
    • /
    • 2007
  • Two ${\beta}$-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS 1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were $^1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr^{15}$-for DI and $^1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys^{15}$-for DIII. The apparent sequences exhibited high sequence similarities with other bacterial ${\beta}$-1,4-glucanases as well as ${\beta}$-1,4-xylanases.

Industrial Applications of Rumen Microbes - Review -

  • Cheng, K.J.;Lee, S.S.;Bae, H.D.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-92
    • /
    • 1999
  • The rumen microbial ecosystem is coming to be recognized as a rich alternative source of genes for industrially useful enzymes. Recent advances in biotechnology are enabling development of novel strategies for effective delivery and enhancement of these gene products. One particularly promising avenue for industrial application of rumen enzymes is as feed supplements for nonruminant and ruminant animal diets. Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. Cellulases, xylanases, ${\beta}$-glucanases, pectinases, and phytases have been shown to increase the efficiency of feedstuff utilization (e.g., degradation of cellulose, xylan and ${\beta}$-glucan) and to decrease pollutants (e.g., phytic acid). These enzymes enhance the availability of feed components to the animal and eliminate some of their naturally occurring antinutritional effects. In the past, the cost and inconvenience of enzyme production and delivery has hampered widespread application of this promising technology. Over the last decade, however, advances in recombinant DNA technology have significantly improved microbial production systems. Novel strategies for delivery and enhancement of genes and gene products from the rumen include expression of seed proteins, oleosin proteins in canola and transgenic animals secreting digestive enzymes from the pancreas. Thus, the biotechnological framework is in place to achieve substantial improvements in animal production through enzyme supplementation. On the other hand, the rumen ecosystem provides ongoing enrichment and natural selection of microbes adapted to specific conditions, and represents a virtually untapped resource of novel products such as enzymes, detoxificants and antibiotics.

Molecular Cloning and Nucleotide Sequence of Xylanase gene (xynT) from Bacillus alcalophilus AX2000. (Bacillus alcalophilus AX2000 유래 xylanase 유전자 (XynT)의 Cloning과 염기서열 분석)

  • Park Young-Seo
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.734-738
    • /
    • 2005
  • A gene coding for xylanase from alkali-tolerant Bacillus alcalophilus AX2000 was cloned into Escherichia coli $DH5\alpha$ using pUC19. Among 2,000 transformants, one transformant showed clear zone on the detection agar plate containing oat-spells xylan. Its recombinant plasmid, named pXTY99, was found to carry 7.0 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynT) was determined, xynT gene was found to consist of 1,020 base-pair open reading frame coding for a poly-peptide of 340 amino acids with a deduced molecular weight of 40 kDa. The coding sequence was preceded by a putative ribosome binding site, and the transcription initiation signals. The deduced amino acid sequence of xylanase is similar to those of the xylanases from Bacillus sp. Nl37 and B. stearothermophilus 21 with $61\%$ and $59\%$ identical residues, respectively.

Molecular Cloning and Expression of the Trichoderma harzianum C4 Endo-${\beta}-1$,4-Xylanase Gene in Saccharomyces cerevisiae

  • Lee, Jung-Min;Shin, Ji-Won;Nam, Jae-Kook;Choi, Ji-Young;Jeong, Choon-Soo;Han, In-Seob;Nam, Soo-Wan;Choi, Yun-Jaie;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.823-828
    • /
    • 2009
  • An endo-${\beta}-1$,4-xylanase (${\beta}$-xylanase) from Trichoderma harzianum C4 was purified without cellulase activity by sequential chromatographies. The specific activity of the purified enzyme preparation was 430 units/mg protein on D-xylan. The complementary DNA (cDNA) encoding ${\beta}$-xylanase (xynII) was amplified by PCR and isolated from cDNA PCR libraries constructed from T. harzianum C4. The nucleotide sequence of the cDNA fragment contained an open reading frame of 663 bp that encodes 221 amino acids, of which the mature protein is homologous to several ${\beta}$-xylanases II. An intron of 63 bp was identified in the genomic DNA sequence of xynII. This gene was expressed in Saccharomyces cerevisiae strains under the control of adh1 (alcohol dehydrogenase I) and pgk1 (phosphoglycerate kinase I) promoters in 2 ${\mu}$-based plasmids, which could render recombinants able to secrete ${\beta}$-xylanase into the media.

Purification and Characterization of Novel Bifunctional Xylanase, XynIII, Isolated from Aspergillus niger A-25

  • Chen Hong-Ge;Yan Xin;Liu Xin-Yu;Wang Ming-Dao;Huang Hui-Min;Jia Xin-Cheng;Wang Jin-An
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1132-1138
    • /
    • 2006
  • Three types of xylanases (EC 3.2.1.8) were detected in the strain Aspergillus niger A-25, one of which, designated as XynIII, also displayed ${\beta}-(l,3-1,4)-glucanase$ (EC 3.2.1.73) activity, as determined by a zymogram analysis. XynIII was purified by ultrafiltration and ion-exchange chromatography methods. Its apparent molecular weight was about 27.9 kDa, as estimated by SDS-PAGE. The purified XynIII could hydrolyze birchwood xylan, oat spelt xylan, lichenin, and barley ${\beta}-glucan$, but not CMC, avicel cellulose, or soluble starch under the assay conditions in this study. The xylanase and ${\beta}-(l,3-1,4)-glucanase$ activities of XynIII both had a similar optimal pH and pH stability, as well as a similar optimal temperature and temperature stability. Moreover, the effects of metal ions on the two enzymatic activities were also similar. The overall hydrolytic rates of XynIII in different mixtures of xylan and lichenin coincided with those calculated using the Michaelis-Menten model when assuming the two substrates were competing for the same active site in the enzyme. Accordingly, the results indicated that XynIII is a novel bifunctional enzyme and its xylanase and ${\beta}-(l,3-1,4)-glucanase$ activities are catalyzed by the same active center.

Cloning and Characterization of Xylanase Gene from Paenibacillus woosongensis (Paenibacillus woosongensis의 Xylanase 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2012
  • A gene encoding the xylanase (XynA) predicted from partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by PCR. This xynA gene consisted of 633 nucleotides, encoding a polypeptide of 211 amino acid residues. The deduced amino acid sequence exhibited 85-89% identity with those of several Paenibacillus xylanases, belonging to the glycosyl hydrolase family 11. As a results of expression of the structural gene by T7 promoter of a pET23a(+) expression vector, xylanase activity was higher in cell-free extract than culture filtrate of a recombinant Escherichia coli BL21(DE3) CodonPlus. However, the expression level of xylanase was not sufficient be detected by SDS-PAGE. The cell-free extract showed maximal xylanase activity at $60^{\circ}C$ and pH 5.5. The predominant products resulting from xylan and xylooligosaccharide hydrolysis were xylose and xylotriose. The enzyme could hydrolyze xylooligosaccharides larger than xylbiose.

Molecular Cloning and Expression of Bacillus stearothermophilus $\beta$-D-Xylosidase Gene in E. coli (Bacillus stearothermophilus $\beta$-D-Xylosidase 유전자의 크로닝 및 Escherichia coli에서의 발현)

  • 오세욱;박성수;최용진;박영인
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.136-142
    • /
    • 1992
  • Bacillus stearothemophilus isolated from soil was identified to express multiple extracellular xylanases. Two HindIII restriction fragments of 5.4 and 6.4 kb from B. stearothermophilus genomic DNA were cloned into pBR322 to obtain recombinant plasmids pMG0l and pMG02, respectively, which enabled E. coli HBlOl cells to produce $\beta$-D-xylosidase activity. By subcloning into pUC18 and Southern blotting, the loci of the $\beta$-D-xyiosidase genes were elucidated to be on non-homologous DNA fragments of 2.2 kb from pMGOl(pMG1) and 1.0 kb from pMG02(pMG2), respectively. The two enzymes produced in E. coli cleaved xylobiose, xylotriose, xylotetrose and xylotetrose to produce xylose as a major end product. The gene on pMG1, distinct from that on pMG2 was observed to encode a bifunctional protein that displayed both P-D-xylosidase (EC.3.2.1.37) and a-L-arabinofuranosidase activities (EC.3.2.1.55).

  • PDF