• Title/Summary/Keyword: xylanase I gene

Search Result 17, Processing Time 0.025 seconds

Molecular Cloning and Expression of a Xylanase Gene from Thermophilic Alkalophilic Bacillus sp. K-17 in Escherichia coli (고온, 호알칼리성 Bacillus sp. K-17 Xylanase 유전자의 Escherichia coli 에의 클로닝 및 발현)

  • Sung, Nack-Kie;Chun, Hyo-Kon;Shim, Ki-Hwan;Kang, In-Soo;Teruhiko Akiba
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 1989
  • A gene coding for a xylanase of thermophilic alkalophilic Bacillus sp. K-17 was cloned in Escherichia coli C600 with pBR322. Plasmid pAXl13 was isolated from a transformant producing xylanase, and the xylanase gene was located in a 4.3 Kb HindIII fragment. Biotinylated pAXl13 hybridized to a 4.3 Kb HindIII fragment from chromosomal DNA of thermophilic alkalophilic Bacillus sp. K-17. The xylanase activity was observed in the extracellular curture fluid of E. coli carrying pAXl13. The pAXl13-encoded xylanase had the same enzymatic properties as those of xylanase I produced by thermophilic alkalophilic Bacillus sp. K-17.

  • PDF

Molecular Cloning and Nucleotide Sequence of Xylanase gene (xynT) from Bacillus alcalophilus AX2000. (Bacillus alcalophilus AX2000 유래 xylanase 유전자 (XynT)의 Cloning과 염기서열 분석)

  • Park Young-Seo
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.734-738
    • /
    • 2005
  • A gene coding for xylanase from alkali-tolerant Bacillus alcalophilus AX2000 was cloned into Escherichia coli $DH5\alpha$ using pUC19. Among 2,000 transformants, one transformant showed clear zone on the detection agar plate containing oat-spells xylan. Its recombinant plasmid, named pXTY99, was found to carry 7.0 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynT) was determined, xynT gene was found to consist of 1,020 base-pair open reading frame coding for a poly-peptide of 340 amino acids with a deduced molecular weight of 40 kDa. The coding sequence was preceded by a putative ribosome binding site, and the transcription initiation signals. The deduced amino acid sequence of xylanase is similar to those of the xylanases from Bacillus sp. Nl37 and B. stearothermophilus 21 with $61\%$ and $59\%$ identical residues, respectively.

Molecular Cloning and Expression of a Xylanase Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Kang, Yun-Sook;Park, Young-Seo;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.251-255
    • /
    • 1991
  • A 16 kilobase (kb) HindIII fragment of alkalophilic Bacillus sp. YC-335 containing a gene for xylanase synthesis was inserted at the HindIII site of pBR322 and cloned in Escherichia coli HB101. After subcloning of recombinant plasmid pYS52, the 1.5 kb fragment was found to code for xylanase activity, and the hybrid plasmid was named pYS55. The DNA insert of the plasmid was subjected to restriction enzyme mapping, which showed that pYS55 had single site for PuvII and SstI in the 1.5 kb insert fragment. Southern hybridization analysis revealed that the cloned gene was hybridized with chromosomal DNA from alkalophilic Bacillus sp. YC-335. About 64% of the enzyme activity was observed in the extracellular and periplasmic space of E. coli HB10l carrying pYS55.

  • PDF

Characterization of the xaiF Gene Encoding a Novel Xylanase-activity- increasing Factor, XaiF

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.378-387
    • /
    • 1998
  • The DNA sequence immediately following the xynA gene of Bacillus stearothermophilus 236 [about l-kb region downstream from the translational termination codon (TAA) of the xynA gene]was found to have an ability to enhance the xylanase activity of the upstream xynA gene. An 849-bp ORF was identified in the downstream region, and the ORF was confirmed to encode a novel protein of 283 amino acids designated as XaiF (xylanase-activity-increasing factor). From the nucleotide sequence of the xaiF gene, the molecular mass and pI of XaiF were deduced to be 32,006 Da and 4.46, respectively. XaiF was overproduced in the E. coli cells from the cloned xaiF gene by using the T7 expression system. The transcriptional initiation site was determined by primer extension analysis and the putative promoter and ribosome binding regions were also identified. Blast search showed that the xaiF and its protein product had no homology with any gene nor any protein reported so far. Also, in B. subtilis, the xaiF trans-activated the xylanase activity at the same rate as in E. coli. In contrast, xaiF had no activating effect on the co-expressed ${\beta}-xylosidase$ of the xylA gene derived from the same strain of B. stearothermophilus. In addition, the intracellular and extracellular fractions from the E. coli cells carrying the plasmid-borne xaiF gene did not increase the isolated xylanase activity, indicating that the protein-protein interaction between XynA and XaiF was not a causative event for the xylanase activating effect of the xaiF gene.

  • PDF

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Molecular Cloning and Analysis of Nucleotide Sequence of Xylanase Gene (xynk) from Bacillus pumilus TX703 (Bacillus pumilus TX703 유래 Xylanase 유전자(xynK)의 Cloning과 염기서열 분석)

  • 박영서
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.188-199
    • /
    • 2002
  • A gene coding for xylanase from thermo-tolerant Bacillus pumilus TX703 was cloned into Escherichia coli DH5 $\alpha$ using pUC19. Among 7,400 transformants, four transformants showed clear zones on the detection agar plates containing oat-spells xylan. One of them which showed highest xylanase activity was selected and its recombinant plasmid, named pXES106, was found to carry 2.24 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynK) was determined, xynK gene was found to consist of 1,227 base-pair open reading frame coding for a polypeptide of 409 amino acids with a deduced molecular weight of 48 kDa. The coding sequence was preceded by a putative ribosome binding site, the transcription initiation signals, and cia-acting catabolite responsive element. The deduced amino acids sequence of xylanase is similar to those of the xylanases from Hordeum vulgare (barley) and Clostridium thermocellum, with 39 and 31% identical residues, respectively. The amino acids sequence of this xylanase was quite different from those of the xylanases from other Bacillus species.

Molecular Cloning and Expression of a Cellulolytic Xylanase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans 기원의 Cellulolytic Xylanase 유전자의 대장균에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • A gene for cellulolytic xylanase of Bacillus circulnns ATCC21365 was cloned on pUC 19 in Eschwichia coli. The recombinant plasniid pXLI80 contained an 1.8 id, inselt composed of0.5 kb and 1.3 kb PslI fragments derived from B, circulans. The 0.5 kh fragment in the upstream region of 1.3 kb one was confirmed lo be indispensable for not only expression but also hyperexpression of the cloned gene. The transformant overproduced the xylanase 135 times greater than that produced by the orlginal B circulnns. The optimum pH and temperature of the cloned enzyme we]-e pH 5.2 and $60^{\circ}C$, respectively. Heal pretl-eatment at TEX>$55^{\circ}C$C for 1 Indid not cause inhibition of the activity of this enzyme. The elm.ynie could hydl-olyre CMC and lichenan as well as xylan to produce xylose(or GI), xylohiose(or G2) and xylolnose(or G3) as inah products. Hence We defined the cloned enzyme as a cellulolytic xylanase. The SDS-PAG electrophoretic mobility and zyiiogram of this enzyme derived from whole cell extracts or c~~lture supematants or E. coli(pXL180) indicated a molecular weight of 45,000 and nonprocessing of the enzyme in the peilplasln of E. coli.

  • PDF

Molecular Cloning and Expression of the Trichoderma harzianum C4 Endo-${\beta}-1$,4-Xylanase Gene in Saccharomyces cerevisiae

  • Lee, Jung-Min;Shin, Ji-Won;Nam, Jae-Kook;Choi, Ji-Young;Jeong, Choon-Soo;Han, In-Seob;Nam, Soo-Wan;Choi, Yun-Jaie;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.823-828
    • /
    • 2009
  • An endo-${\beta}-1$,4-xylanase (${\beta}$-xylanase) from Trichoderma harzianum C4 was purified without cellulase activity by sequential chromatographies. The specific activity of the purified enzyme preparation was 430 units/mg protein on D-xylan. The complementary DNA (cDNA) encoding ${\beta}$-xylanase (xynII) was amplified by PCR and isolated from cDNA PCR libraries constructed from T. harzianum C4. The nucleotide sequence of the cDNA fragment contained an open reading frame of 663 bp that encodes 221 amino acids, of which the mature protein is homologous to several ${\beta}$-xylanases II. An intron of 63 bp was identified in the genomic DNA sequence of xynII. This gene was expressed in Saccharomyces cerevisiae strains under the control of adh1 (alcohol dehydrogenase I) and pgk1 (phosphoglycerate kinase I) promoters in 2 ${\mu}$-based plasmids, which could render recombinants able to secrete ${\beta}$-xylanase into the media.

Purification and Characterization of Clostridium thermocellum Xylanase from Recombinant Escherichia coli

  • Koo, Bon-Joon;Oh, Hwa-Gyun;Cho, Ki-Haeng;Yang, Chang-Kun;Jung, Kyung-Hwa;Ryu, Dai-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.414-419
    • /
    • 1996
  • The xylnX gene encoding a xylanase from Clostridium thermocellum ATCC27405 was cloned in the plasmid pJH27, an E. coli-Bacillus shuttle vector and the resultant recombinant plasmid, pJX18 was transformed into E. coli HB101. The overexpressed xylanase was found to be secreted into the periplasmic space of the recombinant E. coli cells. The crude enzyme was obtained by treating the E. coli cells with lysozyme, and purified by DEAE-Sepharose column chromatography. Molecular wieght of the xylanase was estimated to be 53 kDa by gel filtration. The pI value was determined to be pH 8.8. The N-terminal sequence of the enzyme protein was Asp-Asp-Asn-Asn-Ala-Asn-Leu-Val-Ser-Asn which was considered to be the sequence of that of the mature form protein. The Km value of the enzyme for oat spelt xylan was calculated to be 2.63 mg/ml and the Vmax value was $0.47 {\mu}mole/min$. The xylanase had a pH optimum for its activity at pH 5.4 and a temperature optimum at $60^{\circ}C$. The enzyme hydrolyzed xylan into xylooligosaccharides which were composed mainly of xylobiose (40%) and xyloltriose (12%) after 5 hour reaction. This result indicates that the xylanase from C. thermocellum ATCC27405 is an endo-acting enzyme.

  • PDF