• Title/Summary/Keyword: xylR

Search Result 22, Processing Time 0.021 seconds

Isolation of Constitutive Mutant of xylA Gene in Escherichia coli (대장균 xylA 유전자의 구성적 변이주의 분리)

  • Soh, Jae Hyun;Roh, Dong Hyun;Rhee, In Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.81-89
    • /
    • 1993
  • In order to isolate a mutant which was constitutively expressed in xylA gene, Pxyl-cat-xylA fusion gene was constructed by the insertion of cat gene between xylA promoter and xylA structural gene in pEX13 contained xylA gene. The expression of cat and xylA gene from transformants of xylA mutant DH77 with plasmid pEXC131 containing Pxyl-cat-xylA fusion gene was induced by the addition of 0.4% xylose to media. This results indicated that cat and xylA gene were expressed under control of xylA promoter the presence of xylR gene. We have also isolated constitutive mutant plasmid pEXC131-39 from pEXC131 by trementment with N-methyl-N'-nitro-N-nitrosoguanidine(NTG). cat and xylA gene from pEXC131-39 were constitutively expressed without induction of xylose regardless of xylR gene. Transformants of xylR mutant DH60 with pEXC131-39 also expressed chloramphenicol resistances and xylose isomerase without induction of xylose. This result shows that mutation in region of xylA promoter might make it possible to be constitutively expressed.

  • PDF

Isolation and Characterization of xylR/TMutants in Escherichia coli (대장균(大腸菌)의 xylRjT 변이주(變異株)의 분리(分離) 및 그 특성(特性))

  • Roh, Dong Hyun;Rhee, In Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.125-135
    • /
    • 1992
  • Nine strains of xyl mutants that could not utilize xylose as a carbon source were isolated from E. coli JM109 by the treatment of NTG in order to investigate the regulation of xylose operon and to use recipient cells for the cloning of xylR gene. For the characterization of all isolated mutants, colony colors of all mutants on MacConkey-xylose and MacConkey-xylulose agar plate were observed for the utilization of xylose and xylulose, and the growth level and the activity of xylose isomerase and xylulokinase were determined in need. The isolated xylR/T mutants formed the white colony on MacConkey-xy-lose and MacConkey-xylulose agar plate. They did not detect the activity of xylose isomerase, and the activity of xylose isomerase was not restored in transformants of xylR/T mutant with pEX13 which contained xylA gene. xylR and xylT mutants were classified from xylR/T mutants depending upon the growth level in minimal medium. xylT mutants; DH13, DH121 and DH125 could grow a little in that medium, but xylR mutants; DH10, DH53, and DH60 could not grow that medium.

  • PDF

Deletion of xylR Gene Enhances Expression of Xylose Isomerase in Streptomyces lividans TK24

  • Heo, Gun-Youn;Kim, Won-Chan;Joo, Gil-Jae;Kwak, Yun-Young;Shin, Jae-Ho;Roh, Dong-Hyun;Park, Heui-Dong;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.837-844
    • /
    • 2008
  • Glucose (xylose) isomerases from Streptomyces sp. have been used for the production of high fructose corn syrup for industrial purposes. An 11-kb DNA fragment containing the xyl gene cluster was isolated from Streptomyces lividans TK24 and its nucleotide sequences were analyzed. It was found that the xyl gene cluster contained a putative transcriptional repressor (xylR), xylulokinase (xylB), and xylose isomerase (xylA) genes. The transcriptional directions of the xylB and xylA genes were divergent, which is consistent to those found in other streptomycetes. A gene encoding XylR was located downstream of the xylB gene in the same direction, and its mutant strain produced xylose isomerase regardless of xylose in the media. The enzyme expression level in the mutant was 4.6 times higher than that in the parent strain under xylose-induced condition. Even in the absence of xylose, the mutant strain produce over 60% of enzyme compared with the xylose-induced condition. Gel mobility shift assay showed that XylR was able to bind to the putative xyl promoter, and its binding was inhibited by the addition of xylose in vitro. This result suggested that XylR acts as a repressor in the S. lividans xylose operon.

Purification and Characterization of a Regulatory Protein XyIR in the D-Xylose Operon from Escherichia coli

  • Shin, Jae-Ho;Roh, Dong-Hyun;Heo, Gun-Young;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1002-1010
    • /
    • 2001
  • The D-xylose operon in Escherichia coli is known to be regulated by a transcriptional activator protein, XyIR, which is responsible for the expression of both xylAB and xylFGH gene clusters. The XyIR was purified to homogeneity by using the maltose binding protein fusion expression and purification systems involving two chromatography steps. The purified XyIR protein was composed of two subunits of 45 kDa, which was determined by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration. The purified XyIR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR to the xylA promoter was enhanced by adding xylose. The enhanced binding ability of XyIR in the presence of xylose was not diminished by adding glucose. The presumed XyIR binding site is located between 120 bp to 100 bp upstream the xylA initiation codon.

  • PDF

Construction of Xylose-Inducible Expression Vector Using xylA Promoter of Escherichia coli (대장균 xylA 프로모터를 이용한 xylose 유도성 발현벡터의 구축)

  • Kim, Hyun-Ho;So, Jai-Hyun;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • xylA promoter is a major promoter in xylose operon of Escherichia coli. xylA promoter is sufficient as the promoter for the construction of new expression vector because this promoter was tightly controlled and induced by the addition of xylose. For the construction of xylose-inducible expression vector, 600 bp of xylA promoter was ligated between AatII and HindIII of pUC18, named pXA600. In order to investigate the effect of XylR protein encoded by xylR gene on the xylA promoter, 1,988 bp of xylR gene including its promoter was ligated into downstream of multiple cloning site to the opposite direction of xylA promoter in pXA600, named pXAR600. For the measurement of expression level, 3,048 bp of lacZ structural gene was fused into xylA promoter in both plasmids pXA600 and pXAR600 as a reporter gene, named pXA600-lacZ and pXAR600-lacZ, respectively. The $\beta$-galactosidase activity of pXA600-lacZ and pXAR600-lacZ in E. coli JM109 was determined to be 1,641 and 2,304 unit by the induction with xylose in LB medium, respectively. The $\beta$-galactosidase activity of pXAR600-lacZ/JM109 was about 1.4 times higher by the induction with xylose than that of pXA600-lacZ/JM109. The $\beta$-galactosidase activity of pXA600-lacZ and pXAR600-lacZ in E.coli JM109 showed 6,282 and 9,320 unit by the induction with xylose in DM minimal medium, respectively. A regulator, xylR protein works as an activator for the gene expression by the addition of xylose in the xylose-inducible vectors because the level of gene expression in pXA600 is increased by the insertion of xylR gene into the same vector. The xynA gene of Streptomyces thermocyaneoviolaceus cloned in pXA600 and pXAR600 was successfully expressed in E. coli BLR(DE3). As a result, plasmids pXA600 and pXAR600 using xylA promoter are sufficient as new expression system to produce a foreign protein in E. coli.

System for Repeated Integration of Various Gene Expression Cassettes in the Yeast Chromosome (효모염색체내에 다양한 유전자발현 cassette의 반복적 integration을 위한 system 구축)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1277-1284
    • /
    • 2018
  • In this study, a repeated yeast integrative plasmid (R-YIp) harboring Cre/loxP system was constructed to integrate various gene expression cassettes into the yeast chromosome. The R-YIp system contains a reusable selective marker (CgTRP1), loxP sequence, and target sequence for integration. Therefore, many gene expression cassettes can be integrated into the same position of the same yeast chromosome. In the present study, several model enzymes involving xylan/xylose metabolism were examined, including endoxylanase (XYLP), ${\beta}$-xylosidase (XYLB), xylose reductase (GRE3) and xylitol dehydrogenase (XYL2). Efficient expression of these genes was obtained using two promoters (GAL10p and ADH1p) and various plasmids (pGMF-GENE and pAMF-GENE plasmids) were constructed. The XYLP, XYLB, GRE3, and XYL2 genes were efficiently expressed under the control of the GAL10 promoter. Subsequently, R-YIps containing the GAL10p-GENE-GAL7t cassette were constructed, resulting in pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids. These plasmids were sequentially integrated into chromosome VII of a Saccharomyces cerevisiae strain by repeated gene integration and selective marker rescue. These genes were integrated by the R-YIp system and were stably expressed in the yeast transformants to produce active recombinant enzymes. Therefore, we expect that the R-YIp system will be able to overcome current limitations of the host cells and allow selective marker selection for the integration of various genes into the yeast chromosome.

Regulation of xylA Gene Expression in Escherichia coli (대장균에서 xylA 유전자의 발현조절)

  • Ghang, G-Hee;Roh, Dong-Hyun;Kang, Byung-Tae;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.430-436
    • /
    • 1996
  • The induction by xylose and repression by glucose of xylose isomerase(XI) were investigated to elucidate the regulation for production of XI in Escherichia coli. Regulation for expression of xyIA gene which codes XI is under control of xylR which is a regulatory gene for xylose catabolism. When xyIR gene was resided in chromosome, the inductions of XI by the addition of 0.4% xylose were increased to 1.9 and 1.7-fold in case of locating on multicopy(pEX202/DH77) and low copy Plasmid(pEX102/DH77), respectively, as compared with that of xylA gene which was resided in chromosome(JM109). xyIR gene product derived from xyIR gene on chromosome might react to xylA gene on the plasmid as same as xylA gene on chromosome. In JM109 and xylA transformant; pEX202/DH77 and pEX102/DH77, the inductions of XI were completely repressed by the addition of 0.2% glucose and these catabolite repressions were derepressed by the addition of 1 mM cAMP In comparison with the addition of 0.4% xylose only for the induction XI was inductively produced 1.7 to 2-fold with the addition of xylose plus 1 mM cAMP in DM minimal media. pEX13/TP2010, xylA transformant of the deficient mutant($xyl^-,\;cya^-$; TP2010) of XI and cAMP production, did not induce XI by the addition of xylose only but induced in case of simultaneous addition of xylose and cAMP. These results show that cAMP and xylose are the indispensable effectors for the induction and derepression of Xl in E. coli.

  • PDF

Complete genome sequence of Lactococcus lactis strain K_LL005, a xylose-utilizing bacterium isolated from grasshopper (Oxya chinensis sinuosa)

  • Kim, Hyeri;Guevarra, Robin B.;Cho, Jae Hyoung;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.191-193
    • /
    • 2021
  • Lactococcus lactis is a fermentative lactic acid bacterium that is used extensively in food fermentations. The L. lactis strain K_LL005 was isolated from the grasshopper (Oxya chinensis sinuosa) gut in Korea. In this study, we reported the complete genome sequence of Lactococcus lactis K_LL005. The final complete genome assembly consist of one circular chromosome (2,375,093 bp) with an overall guanine + cytosine (G + C) content of 35.0%. Annotation results revealed 2,281 protein-coding sequences (CDSs), 19 rRNAs, and 68 tRNA genes. Lactococcus lactis K_LL005 has a gene encoding xylose metabolism such as xylR, xylA, and xylB (xylRAB).

Genetic Structure of xyl Gene Cluster Responsible for Complete Degradation of (4-Chloro )Benzoate from Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Kyoung;Chae, Jong-Chan;Kudo, Toshiaki;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.483-489
    • /
    • 2004
  • Pseudomonas sp. S-47 is a bacterium capable of degrading benzoate as well as 4-chlorobenzoate (4CBA). Benzoate and 4CBA are known to be degraded via a meta-cleavage pathway characterized by a series of enzymes encoded by xyl genes. The meta-cleavage pathway operon in Pseudomonas sp. S-47 encodes a set of enzymes which transform benzoate and 4CBA into TCA cycle intermediates via the meta-cleavage of (4-chloro )catechol to produce pyruvate and acetyl-CoA. In the current study, the meta-pathway gene cluster was cloned from the chromosomal DNA of S-47 strain to obtain pCS1, which included the degradation activities for 4CBA and catechol. The genetic organization of the operon was then examined by cloning the meta-pathway genes into a pBluescript SKII(+) vector. As such, the meta-pathway operon from Pseudomonas sp. S-47 was found to contain 13 genes in the order of xylXYZLTEGFlQKIH. The two regulatory genes, xylS and xylR, that control the expression of the meta-pathway operon, were located adjacently downstream of the meta-pathway operon. The xyl genes from strain S-47 exhibited a high nucleoside sequence homology to those from Pseudomonas putida mt-2, except for the xylJQK genes, which were more homologous to the corresponding three genes from P. stutzeri AN10. One open reading frame was found between the xylH and xylS genes, which may playa role of a transposase. Accordingly, the current results suggest that the xyl gene cluster in Pseudomonas sp. S-47 responsible for the complete degradation of benzoate was recombined with the corresponding genes from P. putida mt-2 and P. stutzeri AN10.

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea (대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성)

  • Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.