• Title/Summary/Keyword: xy 색도도

Search Result 4, Processing Time 0.015 seconds

Neuro-controller for Broadcast Lighting LED to Express xy Chromaticity Coordinates (xy 색도좌표 표현을 위한 방송 조명용 LED 신경망 제어기)

  • Park, Sung-Chan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.706-713
    • /
    • 2020
  • To control the LED lighting for broadcasting, LED current control using tri-stimulus values is used for RGB LEDs. For the convenience of control, this control is approximated as a linear function or used as an appropriate value through trial and error. Also, it is not suitable for broadcast lighting because it does not use a diffuser plate applied for mixing sufficient light and color required for actual it. In this study, a neural network with excellent nonlinear function approximation is used as a control method for LED panels for broadcast lighting. We intend to implement an LED panels controller suitable for the desired chromaticity coordinates and dimming values of intensity. As a result of the performance evaluation, the errors of the xy chromaticity coordinates are mostly ±0.02 and the acceptable range of ANSI C78.377A was satisfied. The average errors of the xy chromaticity coordinate are xerror=0.0044 and yerror=0.0030, respectively, and we confirmed the superiority and stable performance of the proposed algorithm.

Gamut Mapping and Extension Method in the xy Chromaticity Diagram for Various Display Devices (다양한 디스플레이 장치를 위한 xy 색도도상에서의 색역 사상 및 확장 기법)

  • Cho Yang-Ho;Kwon Oh-Seol;Son Chang-Hwan;Park Tae-Yong;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-54
    • /
    • 2006
  • This paper proposed color matching technique, including display characterization, chromatic adaptation model, and gamut mapping and extension, to generate consistent colors for the same input signal in each display device. It is necessary to characterize the relationship between input and output colors for display device, to apply chromatic adaptation model considering the difference of reference white, and to compensate for the gamut which display devices can represent for reproducing consistent colors on DTV display devices. In this paper, 9 channel-independent GOG model, which is improved from conventional 3 channel GOG(gain, offset gamma) model, is used to consider channel interaction and enhance the modeling accuracy. Then, the input images have to be adjusted to compensate for the limited gamut of each display device. We proposed the gamut mapping and extension method, preserving lightness and hue of an original image and enhancing the saturation of an original image in xy chromaticity diagram. Since the hmm visual system is more sensitive to lightness and hue, these values are maintained as the values of input signal, and the enhancement of saturation is changed to the ratio of input and output gamut. Also the xy chromaticity diagram is effective to reduce the complexity of establishing gamut boundary and the process of reproducing moving-pictures in DTV display devices. As a result, reproducing accurate colors can be implemented when the proposed method is applied to LCD and PDP display devices

Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution (피부색 칼라 분포 특성을 이용한 조명 색도 검출)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.59-71
    • /
    • 2023
  • This paper proposes a method of estimating the illumination chromaticity of a scene in which an image is taken. Storring and Bianco proposed a method of estimating illuminant chromaticity using skin color. Storring et al. used skin color distribution characteristics and black body locus, but there is a problem that the link between the locus and CIE-xy data is reduced. Bianco et al. estimated the illuminant chromaticity by comparing the skin color distribution in standard lighting with the skin color distribution in the input image. This method is difficult to measure and secure as much skin color as possible in various illumination. The proposed method can estimate the illuminant chromaticity for any input image by analyzing the relationship between the skin color information and the illuminant chromaticity. The estimation method is divided into an analysis stage and a test stage, and the data set was classified into an analysis group and a test group and used. Skin chromaticity is calculated by obtaining skin color areas from all input images of the analysis group, respectively. A mapping is obtained by analyzing the correlation between the average set of skin chromaticity and the reference illuminant chromaticity set. The calculated mapping is applied to all input images of the analysis group to estimate the illuminant chromaticity, calculate the error with the reference illuminant chromaticity, and repeat the above process until there is no change in the error to obtain a stable mapping. The obtained mapping is applied to the test group images similar to the analysis stage to estimate the illuminant chromaticity. Since there is no independent data set containing skin area and illuminant reference information, the experimental data set was made using some of the images of the Intel TAU data set. Compared to Finlayson, a similar theory-based existing method, it showed performance improvement of more than 40%, Zhang 11%, and Kim 16%.

  • PDF

Colored coating of SiO2-TiO2-MxOy(M = Cu, Co, Cr) thin films by the sol-gel process (졸-겔법에 의한 SiO2-TiO2-MxOy(M=Cu, CO, Cr)계 박막의 제조 및 색상에 관한 연구)

  • Kim, Sangmoon;Lim, Yongmu;Hwang, Kyuseog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.229-235
    • /
    • 1998
  • This paper reports the preparation and characterization of colored coatings of $SiO_2-TiO_2-M_xO_y$ (M = Co, Cr or Cu). Films of different compositions ranging from a molar content of transition metals of 5% to 20% have been prepared on soda-lime-silica slide glasses by the sol-gel process. The films have been characterized by a photospectroscopy. The color and reflectance of the films was expressed in Lab color chart and on spectra plot. 'L' as lightness and all reflectance decreased with increase of the content of transition metals. The coating of Co, Cu and Cr cotaining system showed light blue, green and lemon-yellowish color, respectively.

  • PDF