• Title/Summary/Keyword: xanthan molecular weight

Search Result 4, Processing Time 0.018 seconds

Continuous Xanthan Fermentations in a Three-Phase Fluidized Bed Bioreactor (삼상유동층 생물반응기에서의 연속식 Xanthan 발효)

  • 서일순;노희찬;허충회
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • The aerobic bacterium Xanthomonas campestris was cultivated continuously in a three-phase fluidized bed bioreactor to produce extracellular polysaccharide xanthan, Fluidized particles of 8.0 mm glass beads were used for disintegrating the large air bubbles even at high viscosities to improve the gas-liquid oxygen transfer rate. Xanthin productivity [kg xanthan/kg cell dry mass·h] and molecular weight increased, with dilution rate in the continuous xanthan fermentations. The specific xanthan productivities were not limited by the oxygen transfer rate and were much higher in the continuous cultivations than those predicted by the results of the batch xanthan fermentations.

Development of Ready-to-Eat Bulgogi Sauce with No Change of Sensory Properties after High-Dose Irradiation

  • Shin, Mee-Hye;Park, Jin-Gyu;Kim, Cheon-Jei;Lee, Ju-Woon
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.366-371
    • /
    • 2011
  • Viscosity is critically important for bulgogi sauce. However, exposure to irradiation may decrease the rheological properties of bulgogi sauce. This study was conducted to compare the effects of gamma irradiation (0-9 kGy) on viscosity, molecular weight, pH, reducing end level, and water solubility of xanthan gum, guar gum, and locust bean gum as thickening agents/stabilizers in bulgogi sauce. The physicochemical properties of all samples changed (p<0.05) from 3965 to 0 cP (viscosity), from 6048 to 28 kDa (molecular weight), from 5.79 to 4.62 (pH), from 0.13 mg/mL to 1.72 mg/mL (reducing end level), and from 6% to 87% (water solubility) following gamma irradiation. Viscosity after irradiation was most stable (p<0.05) in xanthan gum (from 1249 to 92 cP) compared with guar gum (from 3965 to 0 cP) and locust bean gum (from 1631 to 0 cP). The sensory properties (texture and taste) of bulgogi sauce prepared with xanthan gum (1%, w/w) were highly maintained (about 7.0-5.0) after high-dose irradiation of up to 40 kGy. These results indicate that xanthan gum can be effectively used as a thickening agent/stabilizer in bulgogi sauce, which had low viscosity after irradiation.

New Extracellular Biopolymer Produced by Methylobacterium organophilum from Methanol (Methylobacterium organophilum에 의한 메탄올로부터 생성되는 새로운 생물고분자)

  • Choi, Joon H.;Lee, Un T.;Kim, Jung H.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.397-402
    • /
    • 1989
  • A new extracellular biopolymer was produced by Methylobacterium organophilum from methanol as a sole carbon and energy source. The purified biopolymer was found to have a high molecular weight of about 4-5$\times$10$^6$ dalton and contained 66% (w/w) of carbohydrate but no polyhydro xybutyrate. Other organic constituents were consisted of protein, pyruvic acid, uronic acid, and acetic acid, whereas content of inorganic ash was 22%. Based on the chemical analysis of the biopolymer by TLC method, the polymer was consisted of glucose, galactose, and mannose with an approximate molar ratio of 2:3:2. The biopolymer solution showed a characteristics of pseudoplastic non-Newtonian fluid. The viscosity of the 1%-biopolymer solution was found to be 18,000 cp at a shear rate, 1 sec$^{-1}$, which was almost 10 times higher than that of a commercial xanthan gum.

  • PDF

Isolation and Characterization of a Novel Polysaccharide Producing Bacillus polymyxa A49 KCTC 4648P

  • Ahn, Sung-Gu;Suh, Hyun-Hyo;Lee, Chang-Ho;Moon, Seong-Hoon;Kim, Hee-Sik;Ahn, Keug-Hyun;Kwon, Gi-Seok;Oh, Hee-Mock;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1998
  • The strain A49, which produces a new type of extracellular polysaccharide was isolated from soil samples. From morphological, physiological and biochemical tests, the strain A49 was identified as a Bacillus polymyxa and named Bacillus polymyxa A49. Bacillus polymyxa A49 was found to produce a highly viscous extracellular polysaccharide when grown aerobically in a medium containing glucose as the sole source of carbon. The polysaccharide (A49 POL) showed a homogeneous pattern on gel permeation chromatography (GPC) and its molecular weight was estimated to be about 1.6 mega dalton (mDa). The FT-IR spectrum of A49-POL revealed typical characteristics of polysaccharides. As a result of investigations with HPLC and carbozole assay, A49-POL was found to consist of L-fucose, D-galactose, D-glucose, D-mannose, and D-glucuronic acid, with the molar ratio of these sugars being approximately 1:2:7:50:12. Rheological analysis of A49 POL revealed that it is pseudoplastic and has a higher apparent viscosity at dilute concentrations than does xanthan gum. The consistancy factor of A49 POL was found to be higher, and the flow index of A49 POL lower, than xanthan gum. Its apparent viscosity was comparatively unstable at various temperatures. the A49 POL showed the highest apparent viscosity at pH 3. When salts were added to A49 POL solution, the solution was compatible with up to 10% KCl, 35% NaCl, 55% $CaCl_2$, 55% $MgCl_2$, 55% $K_2HPO_4$, and 110% $Ca({NO_3})_2$, respectively.

  • PDF