• Title/Summary/Keyword: xanthan

Search Result 213, Processing Time 0.025 seconds

Characterization of Mold Releasing Agent Obtained from Carbon Black Suspension in Natural Polymer Solution (카본 블랙과 천연 고분자를 이용하여 제조한 금속 주조용 이형제의 특성)

  • Lee, Soo;Jin, Seok-Hwan;Park, Jung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • A die casting mold releasing agent was prepared from aqueous mixture of powdery carbon black and water soluble natural polymeric materials such as xanthan gum(X-gum) and carboxymethyl cellulose(CMC), which were used as thickening agent as well as curing agent with aldehydes. The suitable concentration of natural polymers for stable dispersion of carbon black in water was 0.25 wt% of X-gum or 1.0 wt% of CMC. When CMC was used less than 1 wt%, the final carbon black disperion showed a rapid phase separation. The adhesion of carbon black releasing agent on glass plate was improved with the amount of crosslinking agent, glutaraldehyde and chain extender, oligosaccharide. However, the affinity of carbon black releasing agent prepared with X-gum was stronger than that with CMC on glass plate. The final carbon black mold releasing agents prepared under our mixing conditions can be applied to the production of castings of high quality with good workability and without worthening evironmental situations.

Biocompatibility of Biodegradable Films by Natural Polymers (천연고분자 분해성 필름의 생체적합성 연구)

  • Hwang, Sung Kwy;Lee, Ki Chang;Rhim, Kook Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.939-943
    • /
    • 1999
  • Recently there has been an explosion of interest in the topic of biodegradable polymers for medical applications. In this study, films were prepared by solution casting method using natural polymers (xanthan, locust bean, guar gum, chitosan and algin) as biomaterials. Biocompatibility of films prepared from natural polymer as a skin implant was evaluated. These biodegradable films were subcutaneously implanted in the back of rats and their biodegradability was investigated by the evaluation of changes in structure, film weight and hematology as a function of time for the biotransformation. The result of rats test showed that locust bean and guar gum induced some suspects of non-biocompatibility in the tissue by foreign body reaction 24 and 48 hrs after implantation. These results showed the potential of partial biodegradable films prepared from natural polymer for ideal skin biomaterials at short period.

  • PDF

Synthesis Conditions of Magaldrate and Rheological Characteristics of its Aqueous Suspensions (마갈드레이트의 합성조건과 그 현탁액의 유동학적 특성)

  • Shin, Wha-Woo;Choi, Kwang-Sik
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • Magaldrate. an antiacid was synthesized by reacting magnesium oxide, aluminum sulfate, and dried aluminum hydroxide gel. The optimum synthesis conditions based on the yield of t he product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of Magaldrate were as follows: Reaction temperature; 61~$85{\circ}C$, concentration of two reactants. Mgo and $Al(OH)_3$: 16~19.8%, molar concentration ratio of two reactants, [MgO]/[$Al(OH)_3$]; 4.2~5.0, temperature of washing water; 36~$41^{\circ}C$ and drying temperature of the product: 76~$80^{\circ}C$. Magaldrate was synthesized under the optimum synthesis conditions and identified by analyzing the chemical composition, and by differential scanning calorimetry and X-ray diffraction method. The Magaldrate sample synthesis under these conditions was used to prepare 15.6% Magaldrate original suspension which was utilized to make 13% Magaldrate suspension dispered in various concentrations of eight types of suspending agents. The acid-neutralizing capacity of 13% Magaldrate suspension dispersed in 0.25% suspending agents was examined by Rosset-Rice method. The maximum pH was reached within 1 minute in all suspension tested, and duration maintained between pH 3~5 was decreased in the order of Na alginate Na silicate(meta) Veegum HV pectin agar>Na>CMC>xanthan gum>bentonite. It was found that the hysteresis loop area was increased with temperature in the case of Riopan Plus and the addition of agar, whereas the area was decreased with temperature in the case of the addition of Na alginate and xanthan gum. 13% Magaldrate suspension tends to sediment by the addition of bentonite.

  • PDF

Formulation of a Novel Polymeric Tablet for the Controlled Release of Tinidazole (티니다졸의 제어방출을 위한 새로운 합성고분자성 정제의 조성)

  • Yoon, Dong-Jin;Shin, Young-Hee;Kim, Dae-Duk;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.349-353
    • /
    • 1999
  • A novel polymeric tablet of tinidazole (TD) was formulated to treat Helicobacter pylori and Giardia lambria more efficiently with reduced hepatotoxicity by controlling the release of TD after oral administration. TD tablets containing various concentrations of either xanthan gum (XG, viscosity enhancer) and/or polycarbophil (PC, mucoadhesive) were prepared by the wet granulation method. In vitro release of TD into pH 2.0 and pH 5.0 buffer solutions was observed at 37°C by using an USP dissolution tester and an UV (313 nm) spectrophotometer. In vivo absorption of TD tablets was investigated in rabbits by measuring the blood concentration of TD after oral administration using a HPLC. Compared to a commercial TD tablet, in vitro release of TD in both pH 2.0 and pH 5.0 buffer solutions significantly decreased as the concentration: of XG or PC in the tablet increased up to 30%. However, when XG and PC was added in combination, TD was completely released in a pH 5.0 buffer solution within 8 hours, whereas the release of TD in pH 2.0 buffer solution significantly decreased. TD in a commercial tablet was rapidly absorbed after oral administration in rabbits. After oral administration of the polymeric tablets that contain both XG and PC, plasma concentration of TD dramatically decreased. Since the oral absorption of TD significantly decreased by the addition of XG and PC in the tablets while TD completely released in a pH 5.0 buffer solution, it was speculated that more TD was retained in the gastrointestinal tract. Thus, it was possible to control the release of TD by changing the content of XG and/or PC in the tablet, thereby manipulating the release rate and the gastrointestinal retention of TD after oral administration in rabbits.

  • PDF

Percutaneous Absorption Characteristics of Antidepressant Paroxetine (항우울제인 Paroxetine의 피부 투과 특성 연구)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • Transdermal drug delivery(TDS) offers many important advantages. For instance, it is easy and painless, it protects the active compound from gastric enzymes, and it avoids the hepatic first-pass effect. Also, it is simple to terminate the therapy if any adverse or undesired effect occurs. But skin is a natural barrier, and only a few drugs can penetrate the skin easily and in sufficient quantities to be effective. Therefore, in recent years, numerous studies have been conducted in the area of penetration enhancement. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other method of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharide, such as xanthan gum and algin were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers and drug contents. Among these polysaccharide, the permeation rate of Paroxetine such as lipophilic drug was the fastest in xanthan gum matrix in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

Manufacture and Stability of Low Calorie Mayonnaise Using Gums (검을 이용한 저열량 마요네즈의 제조 및 유화안정성)

  • 이미옥;송영선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.82-88
    • /
    • 2003
  • Four kinds of low calorie mayonnaises containing 1.2% of sodium alginate, 1.0% of guar gum, 1.0% and 1.2% of xanthan gum and one control mayonnaise containing 78.5% of oil without gums were manufactured in pilot scale. Fresh control mayonnaise was higher in viscosity and turbidity than low calorie mayonnaise with gums. During storage at -1$0^{\circ}C$, viscosity and turbidity of control mayonnaise decreased sharply, whereas those of low calorie mayonnaise with gums decreased slightly. Scanning electron microscopy showed that fresh mayonnaise was composed of heterogeneous population of dispersed spherical oil droplets (<10 ${\mu}{\textrm}{m}$), and oil droplet size of control mayonnaise was smaller than any other low calorie mayonnaise. During storage at -1$0^{\circ}C$, a shift in oil droplet size toward larger oil droplets was frequently observed in control mayonnaise as a result of coalescence of oil droplets. Oil separation and turbidimetric study also confirmed that coalescence of oil droplets was occurring during this accelerated aging treatments.

A Study on the Preparation of Dried Noodle Made of Composite Flours Utilizing Rice, Wheat and Gelatinized Waxy Rice Flours (호화찹쌀가루를 이용한 쌀가루 복합분의 제면성 시험)

  • Park, Wook-Hee;Kim, Hyong-Soo
    • Journal of Nutrition and Health
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 1982
  • This study was attempted to investigate the effects of adding gelatinized waxy rice flour, wheat flour, and Xanthan Gum to rice flour on the preparation and (quality) of dried noodles. 1) Rice flour demonstrated higher maximum viscosity value as determined by Amylograph than wheat flour. Among the composite flour mixture (Rice Flour 85+Gelatinized Waxy Rice Flour 15 + Xanthan Gum 2%) showed the highest viscosity value and (RF 35+ GWRF 15 + Wheat Flour 50) had the lowest. (RF 35 + GWRF 15 +WF 50) demonstrated gelatinization characteristics which is quite similar to that of wheat flour. 2) Forty and 50% replacement of rice flour and gelatinized waxy rice flour (15%) mixture by wheat flour improved significantly noodle making characteristics and cooking quality of noodles. 3) The addition of 2% XG to (RF 45 + GWRF 15 + WF 40) was effective on noodle making properties and on binding properties of cooked noodles. 4) The cooked noodle made of composite flour (RF 45 + GWRF 15 + WF 40 + XG 2%) received the highest total sensory evaluation score among the testing samples, and it was not significantly different from that of wheat flour.

  • PDF

Physicochemical Properties of Fibrous Material Fraction from By-product of Aloe vera Gel Processing (알로에 베라 겔 가공부산물로서의 섬유질 분획의 성분 및 물리화학적 특성)

  • Baek, Jin-Hong;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2010
  • The fibrous material fraction as a by-product from the commercial aloe vera gel processing was obtained and freeze dried. The physicochemical characteristics such as the proximate composition, crystalline/surface structures and several physical functionalities including the water holding capacity (WHC), swelling capacity (SW), oil holding capacity (OHC), emulsion/foam properties and viscosity properties of this powdered sample (100 mesh) were investigated and analyzed by comparison with commercial $\alpha$-cellulose as a reference sample. The total dietary fiber content of powdered sample was very high as much as 87.5%, and the insoluble dietary and soluble dietary fiber content ratios were 77.6 and 22.4%, respectively. The FT-IR spectrum of powdered sample showed a typical polysaccharide property and exhibited a x-ray diffraction pattern for cellulose III and IV like structure. SW (8.24${\pm}$0.15 mL/g), WHC(6.40${\pm}$0.19 g water/g solid) and OHC(10.32${\pm}$0.29 g oil/g solid) of freeze dried aloe cellulose were about 3.3, 1.4 and 2 times higher than those of commercial $\alpha$-cellulose, respectively. Aloe cellulose (~2%, w/v) alone had no foam capacity while improved the foam stability of protein solution (1% albumin+0.5% $CaCl_{2}$) by factor of 300%. Emulsion capacity of 2%(w/v) aloe cellulose was about 70% level of 0.5%(w/v) xanthan gum, but its emulsion stability was about 1.2 times higher than that of xanthan gum. Also, aloe cellulose containing CMC (carboxyl methyl cellulose) of 0.3%(w/v) showed a very good dispersity. Aloe cellulose dispersion of above 1%(w/v) exhibited higher pseudoplasticity and concentration dependence than those of $\alpha$-cellulose dispersion, indicating the viscosity properties for new potential usage such as an excellent thickening agent.

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

New Extracellular Biopolymer Produced by Methylobacterium organophilum from Methanol (Methylobacterium organophilum에 의한 메탄올로부터 생성되는 새로운 생물고분자)

  • Choi, Joon H.;Lee, Un T.;Kim, Jung H.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.397-402
    • /
    • 1989
  • A new extracellular biopolymer was produced by Methylobacterium organophilum from methanol as a sole carbon and energy source. The purified biopolymer was found to have a high molecular weight of about 4-5$\times$10$^6$ dalton and contained 66% (w/w) of carbohydrate but no polyhydro xybutyrate. Other organic constituents were consisted of protein, pyruvic acid, uronic acid, and acetic acid, whereas content of inorganic ash was 22%. Based on the chemical analysis of the biopolymer by TLC method, the polymer was consisted of glucose, galactose, and mannose with an approximate molar ratio of 2:3:2. The biopolymer solution showed a characteristics of pseudoplastic non-Newtonian fluid. The viscosity of the 1%-biopolymer solution was found to be 18,000 cp at a shear rate, 1 sec$^{-1}$, which was almost 10 times higher than that of a commercial xanthan gum.

  • PDF