• Title/Summary/Keyword: x-ray diffraction(XRD)

Search Result 2,640, Processing Time 0.195 seconds

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method (수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성)

  • Cho, Min-Young;Kim, Min-Su;Kim, Ghun-Sik;Choi, Hyun-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

Synthesis and Characterization of Novel Polythiourethanes (새로운 폴리(티오우레탄)의 합성 및 특성)

  • 김경만;허영태;박인환;이범재
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.470-476
    • /
    • 2003
  • In order to obtain high refractive plastic materials, 1,2 -ethylenedisulfanylbis(2-mercaptomethyl-1-ethanthiol) (ESTT) was newly prepared in good yield by the reaction of 1,2-ethylenedisulfanylbis(2-bromomethyl-1-ethanthiol) (ESTB) with thiourea followed by hydrolysis using an aqueous ammonia solution and characterized by $^1$H-NMR (-SH at 1.7 ppm), $\^$13/C-NMR(-CH$_2$SH at 28.4 ppm) and FT-IR (-SH at 2540 cm$\^$-1/) spectroscopy, etc. Polythiourethanes (PTU) were obtained from the combinations of ESTT with each of 4,4'-methylenebis(phenylisocyanate) (MDI), tolyene 2,4-diisocyanate (TDI), isophorone diisocyanate (IPDI), mxylene diisocyanate (XDI), and 1,6-diisocyanatohexane (HMDI) in the presence of dibutyltin dilaurylate as a catalyst, in a casting mold, and characterized by FT-IR (existence of N=C=O) spectroscopy and elemental analyzer (sulfur content). Accordingly, their thermal, mechanical and optical properties were investigated by using DSC, TGA, hardness tester and refractometer: both the melting point on DSC and crystallinity on X -ray diffraction (XRD) for specimens of PTUs were not observed. PTUs with T$\_$g/s above 110 $^{\circ}C$ showed good hardness (Shore D) in the range of 86 to 89. Thermal stabilities of PTUs obtained by using ESTT and each of diisocyanates containing aromatic rings were especially good. Also, the optical transmittances of amorphous PTUs through UV-visible source in the range of 400 to 600 nm were good. PTUs showed refractive indexes above 1.60, and their refractive indexes gradually increased with increase of sulfur contents.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

Optimization of Calcium Acetate Preparation from Littleneck Clam (Ruditapes philippinarum) Shell Powder and Its Properties (바지락(Ruditapes philippinarum) 패각분말로부터 초산칼슘 제조 및 특성)

  • Park, Sung Hwan;Jang, Soo Jeong;Lee, Hyun Ji;Lee, Gyoon-Woo;Lee, Jun Kyu;Kim, Yong Jung;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.321-327
    • /
    • 2015
  • The optimal condition for preparation of powdered calcium acetate (LCCA) which has high solubility, from calcined powder (LCCP) of the littleneck clam shell by response surface methodology (RSM) was examined. Increased molar ratio of LCCP led to reduced solubility, yield, color values, and overall quality. The critical values of multiple response optimization of independent variables were 2.57 M of acetic acid and 1.57 M of LCCP. The actual values (pH 7.0, 96.1% for solubility, and 220.9% for yield) under the optimized condition were similar to the predicted values. LCCA showed strong buffering capacity between pH 4.89 and 4.92 on addition of ~2 mL of 1 N HCl. The calcium content and solubility of LCCA were 21.9-23.0 g/100 g and 96.1-100.1%, respectively. The FT-IR and XRD patterns of LCCA were identified as calcium acetate monohydrate, and FESEM images revealed an irregular and rod-like microstructure.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator (고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가)

  • Lim, Sanghyeong;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.17-26
    • /
    • 2016
  • The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes (수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질)

  • Park, Sukeun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.50-54
    • /
    • 2012
  • In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports (Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과)

  • Kim, Eun-Jeong;Kang, Dong-Chang;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

Effect of Temperature on the Formation of Vaterite in Ca(OH)2-CH3OH-H2O-CO2 System (Ca(OH)2-CH3OH-H2O-CO2계에서 바테라트의 생성에 미치는 반응온도의 영향)

  • Park, Jong-Lyuck;Choi, Sang-Kuen;Kim, Byoung-Gon;Lee, Jae-Jang
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1143-1148
    • /
    • 2002
  • Precipitated calcium carbonate is one of the most versatile mineral fillers and is consumed in an wide range of products including paper, paint, plastics, rubber, textiles, sealants, adhesives and printing ink and can be produced by several methods. Calcium carbonate has three isomorphism; vaterite, aragonite and calcite, with numerous variations of morphology in the natural mineral or organism. Formation process of vaterite in the reaction of system $Ca(OH)_2-CH_3OH-H_2O-CO_2$ were investigated by measuring the electrical conductivity, $Ca^{2+}$ ion concentration, pH in the slurries and by means of X-ray diffraction and electron microscopic observation. It was clearly established that the reaction temperature is important variable in the carbonation process; in general over 50${\circ}C$, the vaterite was precipitated with the calcite and aragonite. SEM and XRD observations revealed that the vaterite formation could be prepared the temperature range of 40 to 50${\circ}C$ and mean size of particles in this range is controlled from 0.5 to 0.8 ${\mu}m$.

Physiochemical Characteristics of Calcium Supplement Manufactured using Starfish (불가사리를 이용하여 제조한 칼슘보충제의 이화학적 특성)

  • Park, Hee-Yeon;Lee, Jung Im;Nam, Ki-Ho;Jang, Mi-Soon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.727-734
    • /
    • 2012
  • For developing calcium supplement from the harmful marine organism starfish, the physiochemical property of the powdered starfish skeletal plate and the hydrolysis condition of the starfish digestive enzyme were studied. The optimal hydrolysis condition of the starfish digestive enzymes was at $55^{\circ}C$ for 12 h. The bulk densities of the powdered starfish skeletal plates of Asterias amurensis and Asterina pectinifera were $1.1{\pm}0.0$ and $1.2{\pm}0.0g/cm^3$, respectively. As for the median size, the values were 10.738 and $11.799{\mu}m$, respectively. According to the added concentration of sodium polyacrylate, the dispersibility rate of the powdered starfish skeletal plate was shown to be 6h at 0.0%, 3 days at 0.1%, 20 days at 0.2%, and until 30 days at 0.4%. The elementary composition of the powdered starfish skeletal plates from A. amurensis and A. pectinifera mainly consisted of calcium, and it formed 98.95 and 98.52% of the powdered starfish skeletal plates, respectively. The results of the X-ray diffraction (XRD) analysis showed that they were present in the form of $CaCO_3$. Based on these results, it is suggested that starfish skeletal plate can be utilized as a functional material for a calcium supplement.